High T_c : New Developments & Progress on Understanding the Mechanisms and Hope for the Future

Tsuyoshi Tajima
Los Alamos Neutron Science Center
Los Alamos National Laboratory
Why do we need high-T_c materials study for RF cavities?

- High-purity Nb and cavities are still expensive.
- Refrigeration to get to 4 K or lower is expensive
- Nb cavities have reached close to its theoretical limit and the recipe to get good results such as $E_{acc} > 35$ MV/m repeatedly will be established within ~5 years.

![Level of Interest vs. Time Diagram](image-url)
Outline

1. What are high-T_c materials
2. Mechanisms of Superconductivity in High-T_c materials (Cu oxide and MgB$_2$)
3. Properties of High-T_c materials that are related to the application to SRF cavities
4. Developments in the past 2 years
What are high-T_c materials

- In 1986, Georg Bednorz and Alex Müller discovered a superconductivity at $\sim\text{38 K}$ in $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ ceramics.
- In 1987, research groups in Alabama and Houston, coordinated by K. Wu and Paul Chu discovered $\text{Y}_1\text{Ba}_2\text{Cu}_3\text{O}_7$ ceramics with $T_c = \text{92 K}$. For the first time above LN2 temperature.
- The highest T_c so far is 138 K with $(\text{Hg}_{0.8}\text{Tl}_{0.2})\text{Ba}_2\text{Ca}_2\text{Cu}_3\text{O}_{8.33}$
- Is room temperature superconductor possible??
- MgB_2 was discovered to be superconductive at $\sim\text{40 K}$ in early 2001. It was a surprise since it is a simple binary intermetallic compound.
2. Mechanisms of Superconductivity in High-\(T_c\) materials - Cuprates (\(\text{Cu}_x\text{O}_y\))

- In general, superconductivity results from the interaction between electrons (holes) and phonons, the quantized lattice vibration.
- The superconductivity occurs when additional oxygen is doped into \(\text{YBa}_2\text{Cu}_3\text{O}_6\) which forms CuO “chains.”
- These oxygen ions attract electrons from CuO\(_2\) plane, which produces holes that become Cooper pairs.

(La,Sr)$_2$CuO$_4$ and YBa$_2$Cu$_3$O$_7$

a) $\text{(La,Sr)}_2\text{CuO}_4$ $T_c=38$ K

b) YBa$_2$Cu$_3$O$_7$ $T_c=92$ K

$\text{Tl}_2\text{Ba}_2\text{Cu}_1\text{O}_6$ (85K), $\text{Tl}_2\text{Ca}_1\text{Ba}_2\text{Cu}_2\text{O}_8$ (105K) and $\text{Tl}_2\text{Ca}_2\text{Ba}_2\text{Cu}_3\text{O}_{10}$ (125K)

Magnesium Diboride (MgB$_2$)

Superconductivity comes from the phonon-mediated Cooper pair production similar to the low-temperature superconductors except for the two-gap nature.

Compared to cuprates:

- Cheaper
- Lower anisotropy
- Larger coherence length
- Transparency of grain boundaries to current flows

These makes MgB$_2$ attractive for applications.

2. Properties of High-T_c materials that are related to the application to SRF cavities

- The RF surface resistance (R_s), which is proportional of $1/Q_0$, is the most important property for RF cavities.
- The other critical property is RF critical magnetic field ($H_{c, RF}$)
- Here, we focus on the R_s and its power dependence and will not discuss $H_{c, RF}$ since there is no data yet, to my knowledge.
Rs of YBCO shows rapid increase with H_{RF}

Nb 1GHz
3. Developments in the past 2 years

• To my knowledge, no efforts to use YBCO or other cuprates for SRF cavities have been made.
• MgB$_2$ has shown in 2003 lower R_s than Nb at 4 K and about 10x lower predicted BCS R_s.
• A MgB$_2$ sample was tested up to $H_{RF} \sim 120$ Oe, i.e. equivalent of $E_{acc} \sim 3$ MV/m, with little increase in the R_s. (late 2004)
• Here, we focus on the development of MgB$_2$.
Simple binary compound, but needs high Mg pressure to form MgB$_2$ phase

Pressure-temperature phase diagram for the Mg:B
MgB$_2$ Film Growth, an example at the Superconductor Technologies, Inc. (STI)

In-situ reactive evaporation

More details are found in
T. Tajima et al, Proc. PAC05.

B.H. Moeckly, ONR Superconducting Electronics Program Review
Red Bank, NJ, February 8, 2005
MgB$_2$ on 4" substrates

R-plane sapphire

Si$_3$N$_4$ / Si

B.H. Moeckly, ONR Superconducting Electronics Program Review
Red Bank, NJ, February 8, 2005
Surface morphology – MgB$_2$ on r-plane sapphire

- Typical surface on r-plane sapphire
- Growth $T = 550 \, ^\circ C$
- $t = 5500 \, \text{Å}$
- Small, conical grains
- $\sim 1000 – 2000 \, \text{Å}$ diameter
- RMS roughness $= 44 \, \text{Å}$

B.H. Moeckly, ONR Superconducting Electronics Program Review
Red Bank, NJ, February 8, 2005
Surface morphology – smoother films

- MgB$_2$ on MgO
 - Growth $T = 550$ °C
 - $t = 3000$ Å
 - RMS roughness = 22 Å

- MgB$_2$ on sapphire
 - Low T growth: 450 °C
 - $t = 1500$ Å
 - RMS roughness = 12 Å

B.H. Moeckly, ONR Superconducting Electronics Program Review Red Bank, NJ, February 8, 2005
Microstructure – MgB$_2$ on c-plane sapphire

- Columnar growth
- Clear layer at interface
- Layer looks grown, not reacted

- Grain size ~100 nm
- Numerous threading defects in lower half
- Defects decrease with thickness

Dave Smith

B.H. Moeckly, ONR
Superconducting Electronics Program Review
Red Bank, NJ, February 8, 2005
Stability – DI water soak

- Films etch very slowly in water
- Films also seem stable with time

B.H. Moeckly, ONR
Superconducting Electronics Program Review
Red Bank, NJ, February 8, 2005
Latest films have shown R_s lower than Nb at 4 K.

Residual resistance still dominates at lower temperatures.

1 cm2 sample on r-cut sapphire
Predicted BCS R_s is $\sim 1/10$ of Nb

Dotted lines are predicted BCS resistance.

R_s does not change much with H_{RF}.

First attempt to coat on a Nb substrate (1.5 cm disk).

R_s was higher than Nb possibly due to the rough ($R_a \sim 400 \text{nm}$) substrate.

The highest H was limited by available power.

There was only one test and the result needs to be confirmed with others.

Measurement at Cornell with TE_{011} Nb cavity at 4.2 K.
Summary

• It is important for the SRF community to continue looking for high-\(T_c\) materials that can be applied to SRF cavities.
• YBCO and other cuprates show rapid increase of \(R_s\) with \(H_{RF}\), preventing the use of cuprates for SRF cavities.
• MgB\(_2\) is more complicated than Nb but less complicated and cheaper than YBCO and other higher-\(T_c\) materials and could potentially lead to significant cost reduction.
• Critical parameters such as \(R_s\) power dependence and critical \(H_{RF}\) need to be determined.
• Making a MgB\(_2\)-coated cavity might be easier than you think. Let’s try to coat/make a cavity with MgB\(_2\) and measure the performance.
Thanks for the data and/or discussions and collaborations!

A. Findikoglu, A. Jason, F. Krawczyk, F. Mueller, A. Shapiro (LANL)
H. Padamsee, A. Romanenko, R. Geng (Cornell)
B. Moeckly (STI)
J. Price (NSWCCD)
H. Abe (NIMS, Japan)
Y. Zhao (Univ. Wollongong, Australia)
J. Liu (SINAP, China, formerly at LANL)
D. Oates (MIT, Lincoln Lab.)
Backup Slides
Tests at Cornell with 6-GHz Nb TE_{011} Cavity

Measurement by Alexander Romanenko, Hasan Padamsee
MgB$_2$ has two energy gaps

RF response has shown lower energy gap behavior.

A. Floris et al., cond-mat/0408688v1 31 Aug 2004