Cryomodule Design, Assembly and Alignment

Carlo Pagani
INFN Milano and DESY
On leave from University of Milano
LCH and TESLA Cryomodule Comparison

从一个LHC状态报告由Lyndon R. Evans

$\phi = 38"$

ACC 4 & ACC 5 in TTF

$\phi = 38"$

ACC 2 & ACC 3 in TTF

$\phi = 42"$
Cavities and ancillaries design are chosen on the basis of a complex optimization that depends on:

- **Accelerated particles**
 - Electron: $\beta = 1$
 - Protons and ions: $\beta < 1$ up to very high energies

- **Beam energy**
 - A variety of shapes for protons and ions

- **Beam current**
 - High current asks for consistent HOM dumping
 - Low current produces high external Q and tight resonance

- **Beam quality requirements**
 - Alignment tolerances
 - High Order Mode damping
SRF Cavities and Ancillaries - 2

- **Pulsed operation**
 - High field dominant wrt minimum losses
 - Lorentz force detuning impact the cavity design
 - Active fast tuner required for high field
 - High peak power coupler for high current

- **CW operation**
 - High Q, low losses, dominant wrt maximum field
 - Microphonics can be crucial
 - Active fast tuner considered for low current
 - High average power coupler for high current

- **Other machine dependent features**
 - High filling factor: interconnections, tuner, magnets, etc
 - Very low static losses: long cryo-strings
General Considerations on Cryomodules

- Many of the past cryomodules can be viewed as the combination of a cavity system and an independently designed cryostat to contain it with minimum losses.
- The design of the new generation cryomodules are more and more integrated in the original concept and optimization of the foreseen accelerator.
- In these cases the cryostat is one of the cryomodule components and its optimization can affects the cavity system design.
- For a given SRF accelerator the overall cryomodule cost and performance dominates with respect to the individual components.
- Components and systems reliability, together with the accelerator availability for experiments, are concepts that are now included in the large accelerator design from the beginning.
- Redundancy or MTTR (mean time to repair)?
- Improve QC (quality control) for MTBF (mean time to repair)
Heavy Ion Machines: ATLAS and JAERY

Medium Beta Cryomodule at JAERY

ATLAS Injector Cryomodule
Heavy Ion Machines: ALPI at LNL

The internal 4.2 K components of an ALPI cryomodule at LNL

Cryomodules and room temperature optics in the ALPI heavy ion Linac
Heavy ion cryomodule general futures

- Cavities are grouped to improve filling factor
- No clean room assembly
- Each cavity is independently suspended and aligned
- Cavities cooled at 4.2 K through a Liquid He reservoir
- No magnetic elements in the modules
- Beam vacuum and iso-vacuum non independent
- Limited use of MLI insulation because of vacuum problems
- Liquid nitrogen shield often used to reduce LHe consumption
The LNL RFQ Cryostat

Cryostat assembly is not peanuts
Some Improvement from Industry

SRF Module with six Half-Wave Resonators for Proton/Deuteron Linac developed by ACCEL

- Design concept from Jaery and LNL
- Magnetic elements included
- Higher QC and Cost
RIA / ATLAS Upgrade Cryomodule

Clean room assembly

Separate cavity and cryogenic vacuum
Large project impact on SRF technology

- In 1985 the successful test of a pair of SC cavities in CERS opened the door to the large scale application of SRF for electrons.

- The decision of applying this unusual technology in the largest HEP accelerators forced the labs to invest in Research & Development, infrastructures and quality control.

- The experience of industry in high quality productions has been taken as a guideline by the committed labs.

- At that time TJNAF and CERN played the major role in SRF development, mainly because of the project size.

- The need of building hundreds of cavities pushed the labs to transfer to Industry a large part of the production.

- R&D and basic research on SRF had also a jump thanks to the work of many groups distributed worldwide.
Effect on Cryomodule Concept

- Independent insulation vacuum
- Clean room assembly of the cavity string
- Large dedicated infrastructure
- New level of system integration and Quality Control
- Cost driven issues included
- Long cryo-strings when possible
LEP II Cavity and Cryomodule

4.5 K

alignment target HOM-coupler outlet

vacuum manifold and safety valve He-gas collector
electrical connections’ port

end ring

sealing envelope

He tank tuning rod
HOM coupler tuning-rod support

RF-power coupler cryogenic connections’ dome

He-safety valve and exhaust longitudinal plate

HOM-coupler outlet

beam-vacuum valve

cavity cell tuning rod tuning-rod support

Carlo Pagani

10 July 2005
LEP II Cryomodules inside the Tunnel
HERA Cavities and Cryomodule
Clean Assembly of a CEBAF Cavity Pair
The SNS Cryomodule
Design Rationales

• Fast module exchange and independent cryogenics (bayonet connections)
 ✓ 1 day
 ✓ 2K production in CM
• Warm quad doublet
 ✓ Moderate filling factor
• Designed for shipment
 ✓ 800 km from TJNAF to ORNL
• No need to achieve small static losses
 ✓ single thermal shield
Design for shipment (TJNAF to ORNL)

- Spaceframe/vessel Lockdown
- Spaceframe ring
- Nitronic Support rods
- Coupler
- Cavity/He helium vessel
- Wheel

Spaceframe concept

Nitronic Support rods

4 g

5 g

g/2
Around the cold mass

- Helium to cool the SRF linac is provided by the central helium liquefier
- He then piped to the 4.5K cold box and sent to the cryomodules
- Joule Thomson valves on the cryomodules produce 2.1 K (0.041 bar) LHe for cavity cooling, and 4.5 K He for fundamental power coupler cooling
- Boil-off goes to four cold-compressors recompressing the stream to 1.05 bar and 30 K for counter-flow cooling in the 4.5K cold box
SNS $\beta=0.61$ Cryomodule Assembly -1
SNS $\beta=0.61$ Cryomodule Assembly -2
SNS $\beta=0.61$ Cryomodule Assembly -3
SNS $\beta=0.61$ Cryomodule Assembly -4
SNS $\beta=0.61$ Cryomodule Assembly -5
SNS $\beta=0.61$ Cryomodule Assembly -6
SNS $\beta=0.61$ Cryomodule Assembly -7
Alignment strategy

- Cavity string is supported by the spaceframe
- Each target sighted along a line between set monuments (2 ends and sides)
- The nitronic rods are adjusted until all the targets are within 0.5 mm of the line set by the monuments
- Cavity string in the vacuum vessel: the alignment is verified and transferred (fiducialized) to the shell of the vacuum vessel.

- Indexing off of the beamline flanges at either end of each cavity
- Nitronic support rods used to move the cavity into alignment
- Targets on rods on two sides of each flange.
CEBAF Upgrade Module Assembly - 1
CEBAF Upgrade Module Assembly - 3
CEBAF Upgrade Module Assembly - 5
The APT Coupler Dominated Case

- Huge power specs
- 100 mA cw!
- Everything built around coupler...
The CESR Cryomodule
The KEKB Cryomodule
The Soleil Cryomodule
2.75 GeV, 500 mA Light Source

Design Parameters

- Nb/Cu single-cell HOM damped cavities
- Designed and built by Saclay/CERN collaboration
- 352 MHz
- 2 two-cavity cryomodules
- 1.2 MV/cavity
- LEP input couplers @ 200 kW
- Loop HOM couplers
- Static heat loss 42 W

High power test at CERN (12/1999):

- E_{acc} up to 7 MV/m
- 120 kW RF power
- 20 W static heat leak
- Not optimal $Q_{ext, fund}$ of dipole HOM couplers
The Rossendorf Cryomodule

Designed and built by ACCEL
TTF = TESLA Test Facility

TTF Goals:

• Demonstrate that Superconducting RF technology is suitable for LC
• Operate TTF at $E_{acc} > 15$ MV/m
• Develop cavity technology for $E_{acc} > 25$ MV/m
TESLA Cryomodule Design Rationales

- High Performance Cryomodule was central for the TESLA Mission
 - More then one order of magnitude was to be gained in term of capital and operational cost
- High filling factor: to maximize real estate gradient
 - Long sub-units with many cavities (and quad): cryomodules
 - Sub-units connected in longer strings
 - Cooling and return pipes integrated into a unique cryomodule
- Low cost per meter: to be compatible with a long TeV Collider
 - Cryomodule used also for feeding and return pipes
 - Minimize the number of cold to warm connections for static losses
 - Minimize the use of special components and materials
 - Modular design using the simplest possible solution
- Easy to be alligned and stable: to fullfil beam requirements
Three Generation Cryomodules in TTF

ACC 5 — ACC 4

ACC 3 — ACC 2

ACC 1

RF gun

800 MeV

400 MeV

120 MeV

4 MeV

Cry 1

Module 1

Cry 2

Module 2 & 3

Cry 3

Module 4 & 5

Vacuum vessel

He feed pipe

70K shield

4K shield

SC cavity

HeCRP
Cryoodles installed in TTF II

ACC 5 ACC 4 ACC 3 ACC 2 ACC 1

800 MeV 400 MeV 120 MeV 4 MeV

RF gun

ACC 4 & ACC 5

ACC 2 & ACC 3
TTF Cryomodule Operation Experience

<table>
<thead>
<tr>
<th>Type</th>
<th>Installation date</th>
<th>Cold time [months]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CryoCap</td>
<td>Oct 96</td>
<td>50</td>
</tr>
<tr>
<td>M1</td>
<td>Mar 97</td>
<td>5</td>
</tr>
<tr>
<td>M1 rep.</td>
<td>Jan 98</td>
<td>12</td>
</tr>
<tr>
<td>M2</td>
<td>Sep 98</td>
<td>44</td>
</tr>
<tr>
<td>M3</td>
<td>Jun 99</td>
<td>35</td>
</tr>
<tr>
<td>M1*</td>
<td>Jun 02</td>
<td>29</td>
</tr>
<tr>
<td>MSS</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>M3*</td>
<td>Apr 03</td>
<td>18</td>
</tr>
<tr>
<td>M4</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>M5</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>M2*</td>
<td>Feb 04</td>
<td>15</td>
</tr>
</tbody>
</table>

10 July 2005
Performing Cryomodules

Three cryomodule generations to:
- improve simplicity and performances
- minimize costs

- Required plug power for static losses < 5 kW/(12 m module)
- Reliable Alignment Strategy
- "Finger Welded" Shields
- Sliding Fixtures @ 2 K
2nd Generation TESLA Cryomodule

- New fabrication sequence
- New strategy for tolerances

"Finger Welded" Shields
3rd Generation TESLA Cryomodule

- Reduce the Cross Section and use a standard “pipeline” tube
 - Redistribute the internal components
 - Reduce the distances to the minimum

- Improve the connection of the active elements to the HeGRP
 - Sliding fixtures to allow “Semi Rigid Coupler” and Superstructures

- Reduce alignment sensitivity to the forces on the HeGRP edges
 - Move the external posts closer to the edges

- Further simplify the assembling procedure
 - Simplify coupler cones and braids
 - Reduce by a factor two the shield components

- System thought for mass production cost cutting
 - Tolerances reduced to the required ones
 - Simpler components and standard tubes wherever possible
Cry2 & Cry3: Cross Sections
Cry2 to Cry3: Diameter Comparison
Cry3 Cross Section

- Cryogenic support
- Helium tank
- Coupler port
- Thermal shields
- WPM
- Pressurized helium feeding
- Shield gas feeding
- Two phase flow
- Sliding support
- GRP

Pressurized helium feeding and shield gas feeding are connected to the cryogenic support. Helium tank and sliding support are also part of the system. Thermal shields are crucial for maintaining the cryogenic temperature.
Helium GRP/Posts

Fixpoint Invar rod

C1 C2 C3 C4 C5 C6 C7 C8 magnet
Sliding Fixtures to HeGRP

• Four C-Shaped SS elements clamp a titanium pad welded to the helium tank.
• Rolling needles reduce drastically the longitudinal friction
• Cavities result independent from the elongation and contraction of the HeGRP.
• Lateral and vertical position are defined by reference screws
• Longitudinal position by an Invar Rod

A Moke-up has been built to measure Friction force.
Results presented at CEC-99.
Friction force: 0.1 kgf
Finger-Welded Shield Behavior

- Cooldown simulation of the 4.2 K and 70 K aluminum thermal shields.
- We used a simultaneous 12 hour linear cooldown.
- The maximal thermal gradient on the shields (upper left graph) is below 60 K, a safe value.
- The temperature fields show that the gradient is concentrated in the welding region, where the fingers unload the structure.
Applying the computed temperature field, deformations and stress distribution can be easily computed.

Maximum stresses are within acceptable limits

Maximum deformations due to asymmetric cooling is below 10 mm.
From Prototype to Cry 3

• Extensive FEA modeling (ANSYS™) of the entire cryomodule
 - Transient thermal analysis during cooldown/warmup cycles,
 - Coupled structural/thermal simulations
 - Full nonlinear material properties

• Detailed sub-modeling of new components and Laboratory tests
 - Finger-welding tests at ZANON
 - Cryogenic tests of the sliding supports at INFN-LASA
WPMs to qualify alignment strategy

WPM = Wire Position Monitor

On line monitoring of cold mass movements during cool-down, warm-up and operation

2 WPM lines with 2 x 18 sensors
4 sensors per active element
8 mm bore radius

1 WPM lines
1 sensor per active element
25 mm bore radius

1 WPM line
7 sensors/module
25 mm bore radius
Safe Cooldown of ACC4 and ACC5
Large Bending in FirstCooldown

New Cooldown procedure suggested by the WPM’s measurements during the first “fast” cooldown

The Big Banana
ACC4 & ACC5 Met Specs

- Still some work at the module interconnection
- Cavity axis to be properly defined

Table 1: Result Summary.

<table>
<thead>
<tr>
<th>TDR Specifications</th>
<th>TDR Specifications (rms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavities</td>
<td>x/y</td>
</tr>
<tr>
<td></td>
<td>± 0.5 mm</td>
</tr>
<tr>
<td>Quadrupoles</td>
<td>x/y</td>
</tr>
<tr>
<td></td>
<td>± 0.3 mm</td>
</tr>
</tbody>
</table>

WPM results (peak)

<table>
<thead>
<tr>
<th>Cavities</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ 0.35/-0.27 mm</td>
</tr>
<tr>
<td>y</td>
<td>+ 0.18/-0.35 mm</td>
</tr>
<tr>
<td>Quadrupoles</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>+ 0.2/-0.1 mm</td>
</tr>
<tr>
<td>y</td>
<td>+ 0.35/-0.1 mm</td>
</tr>
</tbody>
</table>
WPMs and Linac Realignment

Re-Alignment x for Modules 4 and 5 24-Feb-04
Comparison/Calibration Optic Tools and WPM

Re-Alignment y for Modules 4 and 5 24-Feb-04
Comparison/Calibration Optics Tools and WPMs
A WPM is a sort of microstrip four channel directional coupler. A 140 MHz RF signal is applied on a stretched wire placed (nominally) in the center of the monitor bore.

A Wire Position Monitor (WPM) system has been developed for on-line monitoring of the cold mass during cooldown and operation.

The low frequency vibrations of the cold mass, amplitude modulate the RF signals picked up by the microstrips.

The microphonics (and the sub-microphonics) can be recovered de-modulating the microstrip RF signal.
The wire proper vibration spectral lines (fundamental and harmonics) overcome the cold mass mechanical vibration lines.

On the other hand, being their frequencies well predictable by VSE which completely agrees with the experimental data, it’s easy to filter them when processing the data.

Vibrating String Equation (VSE)

\[f_n = \frac{n}{2\ell} \sqrt{\frac{F}{\rho A}} = n \cdot 6.4 \text{ Hz} \]

Wire parameters

- Wire: (CuBe) (BERYLCO 25)
- Density (\(\rho\)): 8.25 g/cm\(^3\) = 8250 kg/m\(^3\)
- Cross Section (\(A\)): 0.196 mm\(^2\)
- Stretched Wire Length (\(\ell\)) 25.950 m
- Tensile Strength: 18 kgp = 176.58 N
Preliminary Vibration Spectra

WPMs 4 and 11 are close to the central post, cold mass fix point. WPMs 7 and 14 are at the end of the corresponding cryomodules.

We have preferred to not filter completely the wire oscillation lines to not suppress useful information.

Looking to WPM 14, a significant amount of noise is present between 10 Hz and 30 Hz, 30 Hz and 40 Hz, due to the proximity of vacuum pumps and similar devices, and under 10 Hz, possibly due to the cryogenic system.

On the contrary, the spectra of the WPM 11 signals, which is at the central post position, shows only the harmonics (filtered) of the wire oscillations.
• WPM 1 & 8 are at the beginning of the cryomodule 4 & 5 respectively.
• The variances of WPM 4 is dominated by the low frequency noise as shown in the PSD.
• For all the WPMs, a small contribution to the variance comes from the spectral losses of the wire self oscillations lines.
• A more efficient procedure to remove these contributions is under study.
TTF Module Cold Test Overview

<table>
<thead>
<tr>
<th>Module</th>
<th>Type</th>
<th>Assembly</th>
<th>Installation and Test</th>
<th>Therm. Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Year</td>
<td>Days</td>
<td>in TTF-Linac</td>
</tr>
<tr>
<td>Capture Spec.</td>
<td>Saclay 1996</td>
<td>Oct-96</td>
<td>96→Sep-03</td>
<td>c/w 13</td>
</tr>
<tr>
<td>M1</td>
<td>I</td>
<td>1997</td>
<td>>></td>
<td>Mar-97</td>
</tr>
<tr>
<td>M1 rep.</td>
<td>I</td>
<td>1997/98</td>
<td>>></td>
<td>Jan-98</td>
</tr>
<tr>
<td>M2</td>
<td>II</td>
<td>1998</td>
<td>>></td>
<td>Sep-98</td>
</tr>
<tr>
<td>M3</td>
<td>II</td>
<td>1999</td>
<td>35+15</td>
<td>Jun-99</td>
</tr>
<tr>
<td>M1*</td>
<td>II</td>
<td>2000</td>
<td>24</td>
<td>Jun-02</td>
</tr>
<tr>
<td>M4</td>
<td>III</td>
<td>2001</td>
<td>18+10</td>
<td>Apr-03</td>
</tr>
<tr>
<td>M5</td>
<td>III</td>
<td>2002</td>
<td>30</td>
<td>Apr-03</td>
</tr>
<tr>
<td>MSS</td>
<td>Spec.</td>
<td>2002</td>
<td>36</td>
<td>Jun-02</td>
</tr>
<tr>
<td>M3*</td>
<td>II</td>
<td>2003</td>
<td>18+6</td>
<td>Apr-03</td>
</tr>
<tr>
<td>M2*</td>
<td>II</td>
<td>2004</td>
<td>20</td>
<td>Feb-04</td>
</tr>
<tr>
<td>(M6 EP)</td>
<td>III</td>
<td>(end 2004?)</td>
<td>Modules under test in TTF2-Linac</td>
<td></td>
</tr>
</tbody>
</table>

Status: 15-Sep-04 RLange-MKS.
TTF Cryomodule Performances

Designed, estimated and measured static Cryo-Loads TTF-Modules in TTF-Linac

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture</td>
<td>46.8</td>
<td>3.9</td>
<td>5.5</td>
<td>Special</td>
</tr>
<tr>
<td>Module 1</td>
<td>I 115.0</td>
<td>76.8</td>
<td>90.0 *</td>
<td>21.0</td>
</tr>
<tr>
<td>Modul 1 rep. I</td>
<td>115.0</td>
<td>76.8</td>
<td>81.5</td>
<td>21.0</td>
</tr>
<tr>
<td>Modul 2</td>
<td>II 115.0</td>
<td>76.8</td>
<td>77.9</td>
<td>21.0</td>
</tr>
<tr>
<td>Module 3</td>
<td>II 115.0</td>
<td>76.8</td>
<td>72.0 **</td>
<td>21.0</td>
</tr>
<tr>
<td>Module 1*</td>
<td>II 115.0</td>
<td>76.8</td>
<td>73.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Module 4</td>
<td>III 115.0</td>
<td>76.8</td>
<td>74</td>
<td>21.0</td>
</tr>
<tr>
<td>Module 5</td>
<td>III 115.0</td>
<td>76.8</td>
<td>74</td>
<td>21.0</td>
</tr>
<tr>
<td>Module SS</td>
<td>115.0</td>
<td>~76.8</td>
<td>72.0</td>
<td>~21.0</td>
</tr>
<tr>
<td>Module 3*</td>
<td>II 115.0</td>
<td>76.8</td>
<td>75</td>
<td>21.0</td>
</tr>
<tr>
<td>Module 2*</td>
<td>II 115.0</td>
<td>76.8</td>
<td>74</td>
<td>21.0</td>
</tr>
<tr>
<td>Module 6 EP</td>
<td>Type III, EP-Cavities</td>
<td>Goal:Solution close to XFEL Modules</td>
<td>Design and estimated values by Tom Petersen 1995 -Fermilab-</td>
<td>Modules under Test in TTF2-Linac</td>
</tr>
</tbody>
</table>
Overview:

21-Mar-04 Start of cool down
28-Mar-04 4.3K/1.1bar
29-Mar-04 2K / 31mbar
07-Jun-04 Linac shut down, cavities kept cold (4.3K/1.1bar)
01-Sep-04 Start of TTF2 Commissioning

Static Cryo losses [Watt]:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Flow Rate</th>
<th>Total</th>
<th>/Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>40/80K</td>
<td></td>
<td>1300</td>
<td>74</td>
</tr>
<tr>
<td>4.3K</td>
<td>320+1.6g/s</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>2.0K</td>
<td></td>
<td>21</td>
<td><3.5</td>
</tr>
</tbody>
</table>

TTF2 Cryogenics since March 2004

Carlo Pagani
Cold Leaks Experience at TTF

Summary of Vacuum/He Leaks after Cold Tests in TTF/TTF2-Modules

<table>
<thead>
<tr>
<th>Module</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>MSS</th>
<th>M1*</th>
<th>M3*</th>
<th>M4</th>
<th>M5</th>
<th>M2*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of leaks Vac</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Number of cool/warm</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3+1</td>
<td>1+1</td>
<td>1+1</td>
<td>1+1</td>
<td>1</td>
</tr>
<tr>
<td>He—>insulation</td>
<td>0</td>
<td>0</td>
<td>1 C5 tank weld</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 C8 bellow w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation—>coupler</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Insulation—>beam pipe</td>
<td>Cav-flange</td>
<td>4 BPM feed-th</td>
<td>1 BPM feed-th</td>
<td>0</td>
<td>1</td>
<td>1(more?)</td>
<td>0</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 C6 e-pickup</td>
<td>2 C2/C8 e-pick</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 C7 coup-flan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupler—>beam pipe</td>
<td>0</td>
<td>1 C1 ceram wi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>He—>beam pipe</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Module assembly picture gallery - 1

String inside the Clean Room
Module assembly picture gallery - 2

String in the assembly area
Module assembly picture gallery - 3

Cavity interconnection detail
Module assembly picture gallery - 4

String hanged to the HeGRP
Module assembly picture gallery - 5

String on the cantilevers
Module assembly picture gallery - 6

Close internal shield MLI
Module assembly picture gallery - 7

External shield in place
Module assembly picture gallery - 8

Welding “fingers”
Module assembly picture gallery - 9

Sliding the Vacuum Vessel
Module assembly picture gallery - 10

Complete module moved for storage
Proven design, just few details to clean up

Most are useful, but not necessary, for X-FEL

Industrialization foreseen for X-FEL good for ILC too

A few examples

- Quad Fixture (sliding as for cavities) - planned for X-FEL
- Flange connections: Sealing and Fixing
- Various braids for heat sinking (all coupler sinking stile)
- Cables, Cabling, Connectors and Feed-through
- Composite post diameter (and fixture for transportation)
- Warm fixtures of cold mass on Vacuum Vessel (fixed and sliding)
- LMI Blankets for the 50-70 K shield (LHC Style)
- Module interconnection: Vacuum Vessel sealing, pipe welds, etc.
- Coupler provisional fixtures and assembly
Design changes important for ILC

- Move quadrupole to the center
 - Quad/BPM Fiducialization
 - High pressure rinsing and clean room assembly issues
 - Movers for beam based alignment? Why not if really beneficial

- Short cavity design
 - Cutoff tubes length by e.m. not ancillaries (coaxial tuner)

- Cavity inter-connection: Flanges and bellows (coating?)
 - Fast locking system for space and reliability (CARE activity)
 - Bellow waves according to demonstrated tolerances

- Coaxial Tuner with integrated piezo-actuators
 - Parametric “Blade Tuner” successfully operated on superstructures
 - Piezo fast tuner not integrated yet

- Longer module design: 10-12 cavities
 - Length to be based on the overall machine cost optimization
Positive

- Very low static losses
- Very good filling factor: Best real estate gradient
- Low cost per meter in term both of fabrication and assembly

Project Dependent

- Long cavity strings, few warm to cold transitions
- Large gas return pipe inside the cryomodule
- Cavities and Quads position settable at $\pm 300 \ \mu m$ (rms)
- Reliability and redundancy for longer MTTR (mean time to repair)
- Lateral access and cold window natural for the coupler

Negative

- Longer MTTR in case of non scheduled repair
- Moderate ($\pm 1 \ mm$) coupler flexibility required
TESLA Like Modules for Protons

8 GeV Linac Cryomodules - 4 Types

Beta = 0.47 (RIA)
- 87-175 MeV
- 2 Cryomodules
- 16 Cavities (RIA)

Beta = 0.61 (SNS)
- 175 - 400 MeV
- 3 Cryomodules
- 24 Cavities

Beta = 0.81 (SNS)
- 0.4 - 1.2 GeV
- 7 Cryomodules
- 56 Cavities

Beta = 1.00 ("TESLA")
- 1.2 - 8 GeV
- 36 Cryomodules
- 288 Cavities

G. W. Foster 29 July ’03

9 Cell Beta=1 Cavities, 1207.5 MHz
TESLA Cryomodule and ERLs

Design of the CW Cornell ERL Injector Cryomodule
As presented at the PAC05

TESLA Cryomodule concept and INFN Blade-Tuner to maximize the filling factor
Ancillaries: Power Coupler

- TTF III Coupler has a robust and reliable design.
- Extensively power tested with significant margin
- New Coupler Test Stand at LAL, Orsay

Pending Problems
- Long processing time: ~ 100 h
- High cost (> cavity/2)
- Critical assembly procedure

Heritage from the 1st Cryomodule concept:
± 20 mm allowed
Ancillaries: Present Tuner Designs

The Saclay Tuner in TTF

The INFN Blade-Tuner

Successfully operated with superstructures
New CEA-Saclay Tuner

New design with piezos
- CARE/JRA-SRF
- SOLEIL upgrades
- larger rigidity

- Fabrication of 2 tuners under way. Available autumn 2005
- 12 NOLIAC piezos, 2 PHYTRON stepping motors ordered
- **Coll. with IPN Orsay**: CEA send NOLIAC piezos to IPN for characterization, and IPN send P.I. piezos for tests on tuners
- **Coll. with INFN-Milano** for measurement with stress sensors @ 2K
The New INFN Blade-Tuner

- Integration of piezos for Lorentz forces and microphonics completed.
- Final Drawing delivered for fabrication.
- Two prototype, including the modified helium tank, expected by end of September 2005
- Cold tests results by fall 2005 (DESY, BESSY, Cornell?)

Now the He tank needs to be split in two parts, with a bellow in between to allow the cavity elongation

- Magnetic shield assembly as for Superstructures
From TTF to ILC

- TTF Operation Experience shows that Cry 3 Modules are close to the optimum in term of performances
- Improvements were conceived at the time of the TESLA TDR, but never developed because of sake of funding and personnel
- X-FEL will use the present design with minimum modifications
- ILC should use the TESLA TDR cryomodule design, very close to the so called Cry 3, as the basis for further improvements
- An international concentrated effort in this direction would have the advantage to have most of the modifications implemented in time for the X-FEL, with the strong support and expertise of DESY, INFN and of the European TESLA Collaboration members.
- A review of the Cry3 design for SMTF could be the next step for ILC