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Workshop on Pushing the Limits 
of RF Superconductivity

• September 22-24, 2004
• Hold at Argonne National Laboratory
• 64 participants invited to discuss how to push 

the limits of RF superconductivity for particle 
accelerators

• 30 talks divided in three sessions:
– Ultimate field limits, new materials, new geometries
– High Q, field emission, Q-slopes
– Future research paths to ultimate performance
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Workshop’s website: http://www.aps.anl.gov/conferences/RFSC-Limits/

Workshop’s presentations available on-line 
(http://www.aps.anl.gov/conferences/RFSC-Limits/Presentations.html)

Workshop’s proceedings published as Argonne Report ANL-05/10, March 2005
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Outline

• Overview of knowledge on high field Q-
slope (or “Q-drop”)

• Improved oxygen diffusion model and 
possible explanation of Q-drop

• Summary
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Q-drop: obstacle before the 
ultimate limit

Peak surface field

Q0

Sharp drop of the quality
factor at Bp ≅100 mT

without field emission

Recovered by low
temperature “in-situ” baking
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BCP treated cavities (1)
• Fine grain (∼ 50µm), rough surface (5-10µm)

R.L. Geng et al.-SRF 99-TUP021

1.3 GHz Single Cell (Cornell)
H. Padamsee et al.-Frontier Workshop-p. 291

Before bake

After bake
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2.2 GHz Single Cell (JLab)

P. Kneisel et al.-PAC 05-TPPT076

Q-drop STILL PRESENT after baking
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BCP treated cavities (2)
• Larger grains (1-5mm) by post-purification, 

rough surface (5-10µm)
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1.5 GHz CEBAF Single Cell (JLab)

1.3 GHz Single Cell (Saclay)
B. Visentin et al.-EPAC 02-THPDO013

Q-drop RECOVERS after baking
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G. Ciovati, unpublished

“Fine” grain

1.5 GHz CEBAF Single Cell (JLab)

BCP treated cavities (3)
“Air” baking

1.3 GHz Single Cell (Saclay)
B. Visentin et al.-SRF 03-MOP19

“Larger” grain 
(post-purif.)

• Reduced Q-drop improvement
• Higher residual resistance
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EP treated cavities (1)
• Fine grain (∼ 50µm), smooth surface (2-5µm)

R.L. Geng et al.-SRF 99-TUP021

1.3 GHz Single Cell (Saclay)
B. Visentin et al.-SRF 03-TUO01
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1.3 GHz 9-Cell Cavity AC76 (DESY)
L. Lilje -EPAC 04- WEAOCH03

Q-drop RECOVERS after baking
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EP treated cavities (2)
• Larger grains (∼ 1mm) by post-purification, 

smooth surface (2-5µm)
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1.5 GHz CEBAF Single Cell (JLab)

Q-drop RECOVERS after baking
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Single grain BCP cavities
• One grain, very smooth surface (<1µm) with BCP

A. Wu - unpublished

Q-drop RECOVERS after baking
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Statistic on Q-drop onset field
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Conclusions (1)
• Q-drop is common to BCP, EP and Single 

crystal cavities
• The onset field is ↑ the ↓ the density of 

grain boundaries is
• The baking effect is different on 

polycrystalline “fine grain” Nb treated by 
BCP and EP, but is similar for ↓ density of 
grain boundaries

• “Air” baking less effective than “UHV” bake
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Origin of Q-drop: E- or B-field?
• Interface Tunnel Exchange Model1: resonant 

absorption of energy due to tunneling of normal e-

between metal and oxide in the presence of strong E-
field

RS
E =  b⋅[exp(-c/Erf) - exp(-c/E0)]

Excellent fit to experimental data

1J. Halbritter, IEEE Trans. on Appl. Superc., 11 No. 1 (2001) 1864
2K. Saito, Proc. 11th SRF Workshop, Travemuende, Germany (2003), ThP17
3A. Gurevich, Argonne Report ANL-05/10, (2005) p. 17
4H. Safa, Proc. 10th SRF Workshop, Tsukuba, Japan (2001) p. 279
5J. Knobloch et al., Proc. 9th SRF Workshop, Los Alamos, NM (1999) p. 77

• All other models2,3,4,5: Q-drop is a 
magnetic field effect
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Measurements on TE011 mode

After post-purification, Q-drop appears in TE011 mode (zero 
E-field on surface) with the same field dependence as for 
TM010 mode and recovers after baking
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G. Ciovati and P. Kneisel – Frontier Workshop – p. 74

1.5 GHz CEBAF Single Cell



16

HF treatment
• HF used to remove oxide layer after baking. The surface 

is being re-oxidized after rinsing and air exposure

 C1-03 ( EP @ KEK - Tests @ Saclay)
E5 : after baking 120°C/60h

I1 = E5 + air exposure 46 months
+ 20' HF + HPR
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Q-drop is NOT restored after a new oxide layer is 
formed

B. Visentin – Frontier Workshop – p. 94
1.3 GHz Single Cell (Saclay)
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Temperature maps before baking
1

4

7

10

13

16

19

22

25

28

31

34
S1

S3
S5

S7
S9 S1

1 S1
3 S1

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

∆T (K)

Azimuth
Bottom 
I i

Top Iris

Equator

Q0 = 2.8 109

Bp = 110 mT

G. Ciovati-unpublished

JLAB

DESY

L. Lilje et al.-SRF 99-TUA001

CORNELL

G. Eremeev et al.-SRF 03-MoP18

“Patchy” losses develop at the cavity equator (high 
magnetic field region)



18

Conclusions (2)

• The Q-drop is due to high magnetic field
• The benefit of baking is maintained after

– exposure to air for 3 years
– high pressure water rinsing
– build-up of new oxide layer
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Baking effect on low field Rs

Cornell
Saclay

JLab, Desy

• Decrease of RBCS due to strong ↓ of l and slight ↑ of energy gap

• The physics of the niobium surface changes from CLEAN (l > 200 nm) 
to DIRTY LIMIT (l ≈ 25 nm ≅ ξ0)
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Surface studies on samples
• Natural oxide (Nb2O5) decomposes into sub-oxides (NbO, NbO2), thinner oxide 
layer

• Segregation of interstitial oxygen near metal-oxide interface, measured 
conc. up to 10 at.%

• Hydrogen? Very difficult to measure accurately, no clear data yet

Carbon

~ oxide-metal interface 

Niobium

Hydrogen

Oxygen (oxide)

C. Antoine – Frontier Workshop – p. 65
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How deep is the baking benefit?

Cavity test result: original Q-drop 
is obtained after ≈ 20 nm thick Nb
was converted to oxide

Sample analysis: oxygen 
concentration in 20 nm depth 
reduced by baking

H. Padamsee et al. – Frontier Workshop – p. 293
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Susceptibility meas. on samples
r32=Bc3/Bc2: depends on

bake temperature and duration• rGL (Ginzburg-Landau) =1.695
• In these measurements: r32 >1.8

Two possible explanations:

• Bc2
surf > Bc2

bulk

Bc3=rGLBc2
surf (“naïve” model)

• impurities in a layer d ≤ ξ

r32=1.67[1+(1-χG)√1.7 d/x]

↑ Tbake, time: ↑ d, ↓ l

S. Casalbuoni et al. – SRF 03 – WEO13
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Magneto-optical meas. on 
samples

• Study flux penetration in Nb samples

Optical image, large grain sample 
(by post-purif.) BCP treated

MO image at 57 mT, 7 K

Evidence of flux penetration along grain boundaries!
P. J. Lee et al. – Frontier Workshop – p. 84
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Conclusions (3)
• Impurity diffusion occurs during baking

– Decrease of mean free path (cavity meas.)
– Susceptibility measurements (samples)
– XPS analysis (samples)

• High O concentration near the surface 
(≈20nm deep) reduced by baking

• Flux penetration may occur at grain 
boundaries

Is the enemy?
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Oxygen diffusion models
• Solve diffusion equation

H. Safa – SRF 01 – MA008

Fixed amount of oxygen

S. Calatroni et al. – SRF 01 – PR025

Infinite source of oxygen at the surface
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Improved model
• Contribution from dissociation of oxide layer

( ) aE RTk T Ae−= A ≅ 3×109 1/s     Ea ≅ 135 kJ/mol2 5Nb O NbOk⎯⎯→

( ) ( ) ( ) ( )
2

2

, ,
, ,

u x t u x t
D T q x t T

t x
∂ ∂

= +
∂ ∂

Diffusion equation with 
source at x=0

≅ 1000 at.% nm, obtained from comparison with data

( ) ( ) ( )0
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112
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−

( )
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( )( )
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,
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−∫ Concentration of oxygen 
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B. R. King et al., Thin Solid Films 192, p. 351 (1990)
Q. Ma and R. Rosenberg – SRF 01 – PR007
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• Diffusion of interstitial oxygen existing 
before baking

( ) ( ) ( ) ( )
2

02

, ,
0,0

v x t v x t
D T v v

t x
∂ ∂

= =
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Solution:

( )
( )

( )
2

40,
4

x
D T tvv x t e

D T tπ

−

=

≅ 10 at.% nm    I. Arfaoui et al., J. Appl. Phys. 91, 
p. 9319 (2002)

General solution:

( ) ( ) ( ), , ,c x t u x t v x t= +
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Oxygen concentration at the surface as 
function of baking temperature
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Schematic of the Nb surface

 

Nb2O5 
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Interstitial oxygen
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Before baking

 

Oxide cluster
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After baking
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How is O related to the Q-drop?

Q-drop onset

κ ≅ 2.4

J. R. Waldram, Superconductivity of metals and cuprates, IoP, 1996

Interstitial oxygen 
concentration of ≅ 0.56 at.%#

# C.C. Koch et al.,Phys. Rev. B 9 (1974) p. 888
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Flux penetration at reduced Bc1
• There exist a surface barrier which prevents 

vortices from penetrating even above Bc1
1

BUT
the surface barrier can be reduced to zero in 
non-uniform (rough) surfaces2

Surface morphology

Changes in surface barrier

Onset of Q-drop (↑ smoother surfaces)

1C. Bean and J. D. Livingston, Phys. Rev. Lett. 12 p. 14 (1964)
2R. D. Blois and W. de Sorbo, Phys. Rev. Lett. 12 p. 499 (1964)
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Losses due to flux penetration
• Rabinowitz1 calculated the power loss due to a 

normal conducting fluxoid in rf field

Rs(Bp) ∝ exp(D/Bp)

( )
1

lnB

kD
k F N R a f d a

∆
−⎡ ⎤⎣ ⎦

D ≅ 2.2 T (with ρ=ρn)

D ≅ 5 ÷ 8 mT from experiments

1M. Rabinowitz, J. Appl. Phys. 42 p. 88 (1971)
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Q-drop onset freq. dependence 
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Rabinowitz3 calculated 
that for the case of 
negligible viscous 
damping and 
negligible pinning

Bp_flux_penetration ∝ ω

1B. Visentin – Frontier Workshop – p. 94
2M. Kelly et al. – Frontier Workshop – p. 278
3M. Rabinowitz, J. Appl. Phys. 42 p. 88 (1971)
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Summary
• The onset field of the Q-drop and the effect of 

baking seem to depend on the density of grain 
boundaries

• The Q-drop appears to be driven by magnetic-field
• There is a high oxygen concentration at the 

oxide/metal interface which seems to be diluted by 
baking

• An improved oxygen diffusion model can be linked 
to a change of the onset field for flux penetration 
to explain the Q-drop and the baking effect
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Open issues
• Is there enough experimental evidence to 

exclude H from playing a role in the Q-
drop?

• How can we test the hypothesis of flux 
penetration during Q-drop?

• Interpretation of experimental data against 
O hypothesis:
– Saclay data: Q-drop is not restored after HF 

rinsing of baked cavity (O conc. near surface 
restored as before baking)
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