Industrialization process

Power couplers for XFEL project as an example

Industrialization: Why?

Start: Prototypes (30 Couplers)

Industrialization process

End: Large series (1000 Couplers)

Quality:	- uneven
	- random anomalies
Manufacturing:	- long and difficult
	- lack of procedure
	- only a few people have the competence
High cost	

Quality:	- equal for all items
	- reliable
Manufacturing:	- regular process
	- written procedures
	- standard competence
Lower cost	
Industrialization: What for?

Objectives:
1. To improve the quality
2. To define precisely:
 - all manufacturing processes
 - the control plan for quality assurance
 - the necessary equipment
 - the competences and the people
 - the manufacturing sequences
 - the schedule
 - the room space needed for all steps
 - the costs
 - the risks (technical, of procurement, financial)
3. To reduce the manufacturing costs
Before industrialization: specifications changes

- 4 diagnostics removed
- motorized tuning

TTF-3 Coupler

XFEL Coupler
Before industrialization: final design

Review drawings of each component in terms of tolerances
Analysis of each function results in:

- options for design
- options for material
- options for geometry
- options for components junctions

Each option has to be investigated in terms of:

- performance compatibility
- feasibility
- availability
- cost
→ Simplify concept

Example: Cold external conductor

Present design: bellows collars are machined + welded to standard bellows

Alternative: bellows including special collars are hydroformed together in 1 part
Industrialization: Topics of development -1-

→ Design for « manufacturability »

• Review existing design
• Identify the necessary functions
• Determine maximum acceptable tolerances
• Identify possible options for design
• Seek functional simplicity:
 • to minimise the number of parts
 • use standard products whenever possible
 • design for ease of assembly: several assembly solutions are possible, investigate and optimise
 • design for ease of control and test
 • design in view of packing and transport
Industrialization: Topics of development -2-

- Risk mitigation:
 - Assessment and re-design of areas at technical and process risk
 - Generation of product and process specifications
 - Update design

- Validation phase:
 - Modelling of component and process
 - Testing
 - Prototypes
 - Update design

- Other design topics to be considered:
 - reliability (of components, welds, coatings)
 - other risks (of procurement, logistics, financial)
 - MTBF, failure analysis (welds, windows, motions)
 - maintainability (easiness of replacement)
 - ergonomics (handling, assembly)
Industrialization: Check?

→ Iterative process after every change

Verification phase
Several possible new designs result from the functional analysis:

→ Verify that the desired specifications are fulfilled
→ Check the coherence of interfaces
→ Produce prototypes
→ Follow a test program
→ Analyze the results
→ Corrective actions if necessary
→ Decide on the final solution
→ Finalize Manufacturing Control Plan
For the XFEL power couplers, industrialization studies will be performed through “Definition contracts”:

- Essentially intellectual work (in dialog between the industry and our Lab):
 - Define all manufacturing processes (analysis and validation models)
 - Risk analysis (process, logistics)
 - Determine cost in series and justify
- Produce 2 prototypes (to be tested at LAL - Orsay)

Particularities

- 3 contracts will be awarded on the same subject: « Industrial studies »
- 2 teams will be selected after final evaluation
- contracts for manufacturing 2 series of 500 XFEL couplers will be awarded without a new call for tenders
- the 2 contracts may be awarded to a single company
Follow-up and evaluation of definition contracts

1. Continuous evaluation of performance
 - contracts will run simultaneously during 21 months
 - Regular progress reports
 - Continuous control of industry activity

2. Formal reviews are key points with delivery of documents, models and prototypes
 - SDR (System Design Review)
 - PDR (Preliminary Design Review)
 - CDR (Critical Design Review)
 - Final Review
Keypoints of the definition contracts

Contract Award: T_0

Kickoff meeting: soon after T_0

System Design Review: $T_0 + 3$ months
 - functional analysis
 - identification of processes and proposal for models
 - preliminary development plan, management plan

Preliminary Design Review: $T_0 + 8$ months
 - models for welding, brazing, specific materials, Cu coating
 - Quality assurance plan
 - development plan, management plan
 - Technical design review
 - preliminary risk analysis

Critical Design Review: $T_0 + 14$ months
 - final models for validation of Cu coating
 - final justification design file
 - final risk analysis
 - preliminary cost analysis

Final Review: $T_0 + 21$ months
 - delivery of 2 prototypes
 - plan for logistics of manufacturing and conditioning
 - final cost report
Deliverables for the definition contracts

1 - Technical reports: spread over 3 intermediate reviews (see time schedule)
- Conduct and comment all studies necessary for the fabrication of couplers, including TiN deposit
- Determine and explain the manufacturing processes, provide models for validation of each process
- Finalize and justify the mechanical design in view of lower cost in series and shorter time of assembly, evaluate risks
- Define and comment the sequences of assembly and conditioning of couplers, estimate time for assembly sequences
- Determine and comment the manufacturing logistics (in manpower, in building area) including conditioning, and evaluate difficulties and risks
- Establish a project management plan for the manufacturing in series:
 . PBS, WBS
 . interfaces
 . Cost control, time schedule control
 . Management of changes
 . Quality assurance
 . Risk management
 . Documentation control
- Establish a manufacturing schedule including conditioning and delivery

2 - Deliver validation models and 2 prototypes:
- models to validate each manufacturing process (welding, brazing, spinning, Cu coating, …)
- 2 prototypes assembled on test stand ready for conditioning:
 - already cleaned, baked, assembled, vacuum pumped and leak tested

3 - Financial report:
Objective: Commitment to a unit price in series, for 500 and for 1000 couplers
- Fill out a detailed price list including manufacturing, assembly and HF conditioning (Klystrons and modulators could be provided by the XFEL project), packing and transport on site
- Deliver a detailed report on price justification analysis