High Field Q-Slope & Oxygen Diffusion
High Field

Q-slope

Baking → O Diffusion
Baking ≡ **Recipe for high gradients**

in-situ (UHV) \(T = 110 - 120\, ^\circ\text{C} \) \(t = 1 - 2 \) days

TTF 1.3 GHz - Saclay / KEK
- Polycrystalline
- No Thermal Treatment
- Electropolishing

LL 2.2 GHz - JLab
- Single crystal
- 800°C - 1250°C / Ti
- Chemical Etching 1:1:1

Whatever the niobium structure... (Single or Poly-crystal,)
Whatever the fabrication method... (EB Welding or Hydroforming, bulk Nb or clad Nb/Cu)
Whatever the thermal treatment... (nothing, 800°C, 1300°C/Ti)
Whatever the chemical treatment... (Electropolishing or BCP)
Baking => O Diffusion

Nb superconductivity is modified
surface resistance R_s is trough $R_{BCS}(\ell)$ & R_{res}

$$R_s = R_{res} + A(\lambda_L, \xi_F, \ell) \frac{\omega^2}{T} e^{-\Delta/kT}$$

High Field Q-slope improvement : O diffusion is it involved too ?

110 °C
60 hours
in-situ
(UHV)

Figure:

- **Graph 1:**
 - R_s vs. $1/T$ for C1-05 (BCP cavity)
 - RS vs. 1/T
 - Data points for no baking and 110°C - 48h

- **Graph 2:**
 - Q_0 vs. E_{acc} for C1-05 (BCP cavity)
 - Data points for different conditions:
 - no baking
 - 110°C - 48h
 - 4.2 K (no baking)
 - 4.2 K (110°C)
 - Quench
Baking Parameters (T, t)

with **Unchanged Oxygen Penetration**

2^{nd} Fick's law

\[
\frac{\partial C}{\partial t} = D_0 e^{E_A/RT} \frac{\partial^2 C}{\partial x^2}
\]

\[\rightarrow \text{analytic solutions}\]

110 °C / 60 hours

145 °C / 3 hours

High Field Q-Slope?

thin oxide layer: $C(x,0) = Q \delta(x)$

semi infinite solid: $C(0,t) = C_S$
« Fast » Baking (UHV)

- Infra-Red emitters (short T rise time)
- Cavity pumped out (Ultra High Vacuum)

Similarities with Standard Baking
O diffusion → HF Q-slope improvement

145 °C - 3 hours
« UHV » → « Air - Baking »

Atmosphere - Nb Surface Interaction

Cavity open-ended in Stove
(room atmosphere - atmospheric pressure)

110 °C
60 hours
+ HPR

no significant modification due to the atmosphere, but...
Fast Air-Baking

145°C / 3 hours + HPR

Bad Results after baking (R_s, quench)

Active interaction between atmosphere and Nb surface (≠ Fast UHV-Baking)

Oven Wet Cavity from HPR

IR heaters

Dry Cavity

CR hygrometry 60%

Bernard Visentin
SRF Workshop – Ithaca / 13th July 2005
Similarities with standard in-situ baking (UHV)
150 °C / 60h

Fast Air-Baking @ 145°C / 3h

O concentration in excess

going from surface
due to wet atmosphere H₂O

3 hours is too long

XPS analysis on Nb Samples:
- to confirm this hypothesis
- to fix the right time for fast air-baking @145°C
From H$_2$O on surface

<table>
<thead>
<tr>
<th></th>
<th>110 °C 3 h</th>
<th>110 °C 60 h</th>
<th>145 °C 3 h</th>
<th>145 °C 60 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHV</td>
<td>=</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Air</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

O % from NbO$_x$, NbO$_5$
optimum value for O concentration is needed in the Nb RF layer to suppress the HF Q-Slope...

High Field Q-slope

Baking ➔ O Diffusion

Nb doping by O

A key to understand the High Field Q-slope Origin ...

But not only ...
Practical Consequence:

Fast Baking well adapted to Cavity Mass Production

- Clean Room (Class 100)
- Test Stand (Vertical Cryostat)

- High Pressure Rinse - 85 bars (FE)
- Air-Drying: RT - 3 hours
- Assembly + Helium Test
- «in-situ» Baking: 110 °C - 2 days
- RF Test

- Save time:
 - Decrease Baking Duration
 - Risk of helium leaks (∝ T)
 - Baking before Assembly

- Save step:
 - Drying with Baking
Combination of Air-Drying and Baking

- Clean Room (Class 100)
 - High Pressure Rinse - 85 bars (FE)
 - Hot Air-Drying: 145°C, t < 3 hours
 - Assembly + Helium Test

RF Test

Fast Air-Baking on Wet cavity under Laminar Flow (FE)

OK, t < 3 hours

turbulences
Thank you for your attention ...