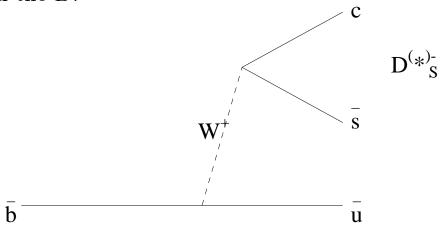

A Search For $B^-, \bar{B} \to D_s^- X_u$ With CLEO II and II.5

Kenneth W. McLean
CLEO Experiment
Vanderbilt University
May 2nd, 2000



- Measuring the elements of the Cabibbo-Kobyashi Maskawa (CKM) matrix, which describes the weak transitions of quarks, is one of the central themes of B-physics.
- Interferences between different processes, which expose phase differences between CKM elements, are required to measure the angles of the "unitarity triangle".
- Determination of the magnitudes of the CKM elements, the sides of the triangle, is a prerequisite to understanding these effects.

Measuring V_{ub} from $b \to uW^-, W^- \to \bar{c}s$

• $b \to u(\bar{c}s)$ transitions $(b \to u \text{ with upper-vertex charm})$ should be as strong as the charmless decays $b \to u(\bar{u}d)$, and are less complicated by interference between the quarks from the W and those from the B.

$$B^{+}, B^{0}$$
 $\pi^{-/0}, \eta, \rho^{-/0}, \omega, ...$

• One even expects an enhancement of $\bar{B} \to D_s^- X_u$ w.r.t. $\bar{B} \to \pi^- X_u$ of about 400% due to the ratio of decay constants, even with the reduced phase space:

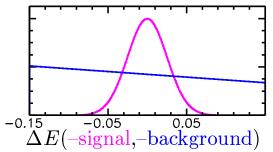
$$\frac{\Gamma(B \to D_s^- X_u)}{\Gamma(B \to \pi^- X_u)} = \frac{P(D_s) f_{D_s}^2}{P(\pi) f_{\pi^-}^2} \tag{1}$$

neglecting those Penguin contributions, exchange terms, and QCD phases that complicate $\pi\pi$.

V_{ub} Measurement Method: Inclusive vs Exclusive

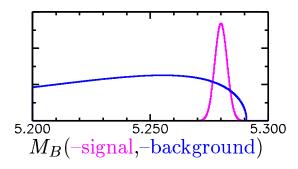
• In V_{ub} induced B-decays, the D_s from the upper-vertex is produced with higher momentum than in V_{cb} transitions.

- This suggests an inclusive analysis of the end-point spectrum of D_s production.
- This would mainly be limited by statistics in the subtraction of D_s 's from the continuum $(e^+e^- \to q\bar{q}, q = u, d, s, c)$. as determined from off-resonance data.
- Given CLEO's sample of 9.7×10^6 $B\bar{B}$ events, detecting such an inclusive signal at expected rates of $\approx 5 \times 10^{-4}$, requires continuum suppression approximately $5 \times$ stronger than that used in CLEO's inclusive measurement of $b \to s \gamma$ in order to observe a 3σ effect.
- So, instead, we search for exclusive $B \to u(\bar{c}s)$ decays:


$$B \to D_s^{-(*)} P$$
, $(P = \pi^{\pm}, \pi^0)$, (2)

where we are able to use the dynamics of the decay to suppress backgrounds.

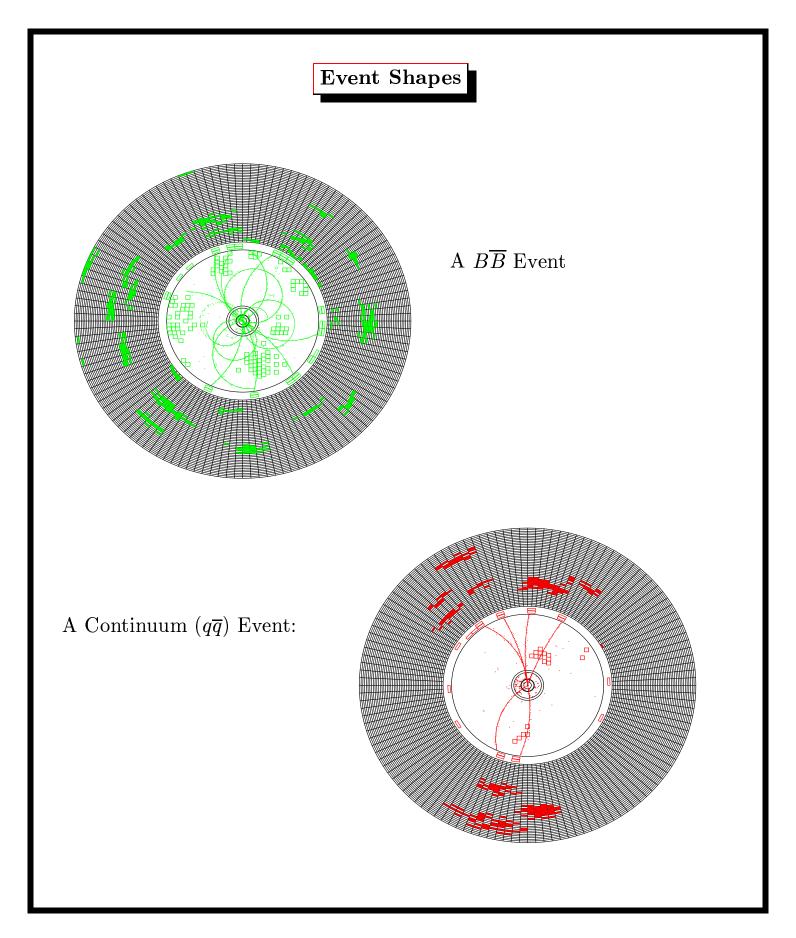
• This also allows the combination of several D_s decays with different requirements tuned to the respective background levels.


Analysis Strategy

- We combine several D_s decay channels:
 - my analyses using D_s^- decays to $\phi \pi^-, \phi \rho^-, \phi 3\pi$ (using $\phi \to K^+K^-$ and $\rho^- \to \pi^-\pi^0(\gamma\gamma)$)
 - analyses by S.Marka (now at LIGO) of D_s^- decays to $\eta \pi, \eta \rho$ (using $\eta \to \gamma \gamma$ and $\eta \to \pi^+ \pi^- \pi^0 (\gamma \gamma)$)
 - Only the channels with a ϕ will be described here.
 - -15% of D_s branching fraction (including subdecays) is used.
 - The $D_s \gamma$ decay is used to reconstruct D_s^* candidates
- The D_s candidates from reasonable hadronic events are combined with π^- or π^0 and considered as possible reconstructed $B \to D_s^{(*)} X_u$ events if their energy loosely matches the beam energy:
- $\Delta E = |E_{beam} E_{D_s^{(*)}\pi}| < 0.3 \,\text{GeV}$
- $\sigma(\Delta E) = 25(D_s^{(*)}\pi^+) 50(D_s^{(*)}\pi^0)$ MeV.

and their momentum is close to that expected for a B:

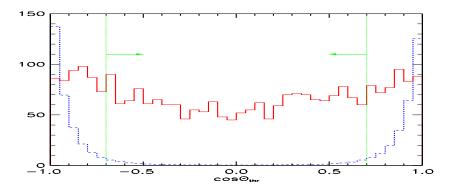
- $M_{beam} = \sqrt{(E_{beam}^2 p_{D_s^{(*)}\pi}^2)} > 5.2 \,\text{GeV/c}^2$
- $\sigma(M_B) = 2.8(D_s^{(*)}\pi^+) 3.4(D_s^{(*)}\pi^0)$ MeV

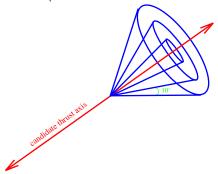

Backgrounds

After requiring that the dE/dX measured for the K^{\pm} and π^{\pm} is consistent $2.25\sigma - 3.0\sigma$, and making loose cuts on reconstructed masses:

- $\chi^2 < 5$ for those particles with no significant natural width
- $\delta_M(\rho^- \to \pi^- \pi^0) < 150 \text{ MeV/c}^2$
- $\delta_M(\phi \to K^-K^+) < 20 \text{ MeV/c}^2$
- $\delta_M(D_s) < 20 \text{ MeV/c}^2$
- $\delta^* = |M(D_s^*) M(D_s)| < 20 \text{ MeV/c}^2$

one finds rates many times larger than any signal expected to be $O(10^{-5})$, but with no enhancement near $M(D_s^{(*)}\pi) = M_B$ and $\Delta E = 0$. So...how to eliminate the backgrounds?

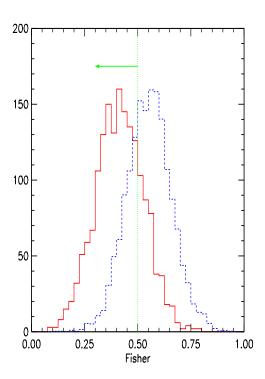

- $b \to cX$ transitions constitute approximately 100% of B decays
- but $B \to D_s \pi$ decay have higher momenta $(P(D_s) \approx 2.28 \pm 0.18 \text{ GeV/c}, P(\pi) \approx 2.28 \pm 0.14 \text{ GeV/c}).$
- So $b \to cX$ backgrounds should be low, the best levers against them are tighter cuts on δE , M_B , helicity angles and daughter particle masses.
- Continuum $(e^+e^- \to q\overline{q}, q=u,d,s,c)$ is the main background.
- So use difference in event shape between continuum (two light quark jets tend to produce a clear axis) and $B\bar{B}$ (the B mesons are slow, $\approx 330 \text{ MeV/c}$, resulting in an isotropic event).


Continuum Suppression

• $\cos \theta_B$: angle between the *B* candidate and the beam axis ($\propto \sin^2 \theta$ for B-decays, flat for continuum backgrounds)

• $\cos \theta_{thrust}$: angle between the *B* candidate thrust axis and the thrust axis of the rest of the event (continuum peaks near ± 1 , signal candidates produce flat distributions)

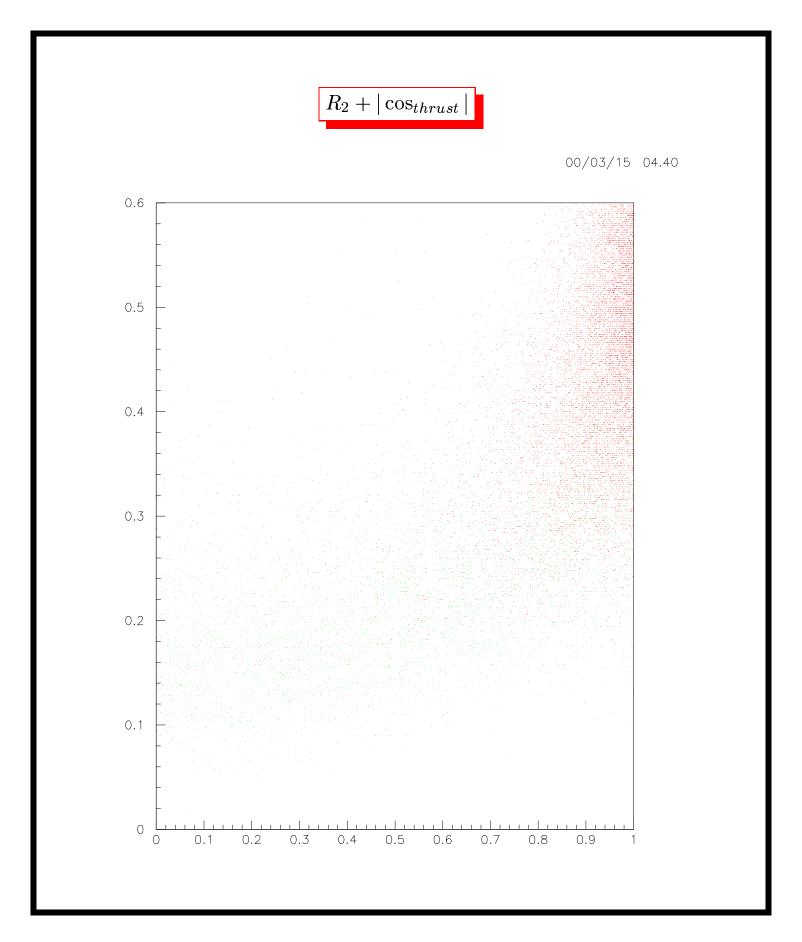
- 2nd Fox-Wolfram Moment R2 (peaks at 1 for continuum, 0 for $B\overline{B}$)
- Sums of charged and neutral momenta in 9 10° double cones about the candidate thrust axis (virtual calorimeter).

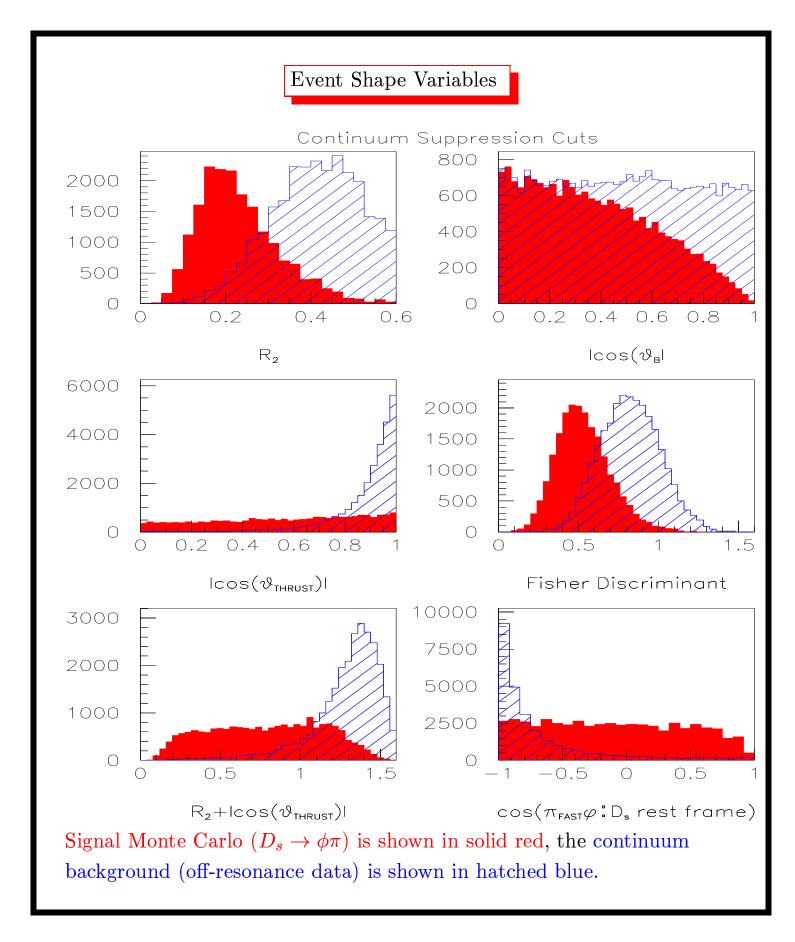


- Fisher Discriminant (optimum combination of the above variables)
- With $B \to D_s^{(*)} \pi_{fast}$ and $D_s \to \phi X$ one can cut on the $\phi \pi_{fast}$ angle in the D_s rest frame (anticorrelated for jetty events).

Fisher Discriminant

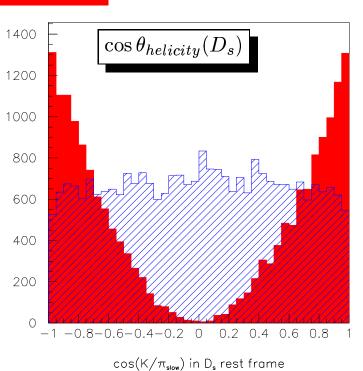
A Fisher Discriminant is a linear combination of measurements with coefficients optimized such that it emphasizes the *differences* between two phenomena.

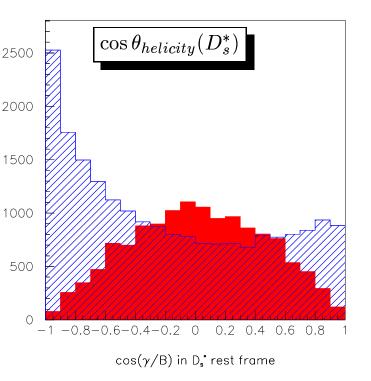

CLEO uses the 9 virtual calorimeter momentum sums, the B thrust-axis direction ($\propto (\vec{p}_1 - \vec{p}_2)$ in a two body decay),and the B direction ($\propto (\vec{p}_1 - \vec{p}_2)$).



$$\mathcal{F} = \sum_{i=1}^{11} \alpha_i X_i$$

$$\alpha_i = \frac{\langle X_i \rangle_{background} - \langle X_i \rangle_{signal}}{\sigma(X_i)_{background}^2 + \sigma(X_i)_{signal}^2}$$

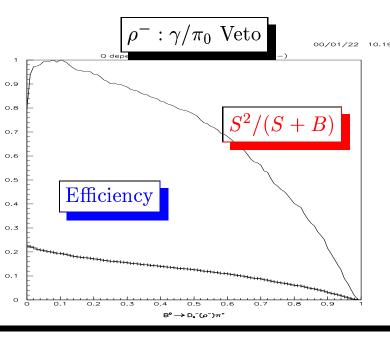

The Fisher discriminant is almost independent of the decay mode under study since it is determined by the behaviour of the rest of the event, whether miscellaneous B decay, or continuum.



Spin Structure

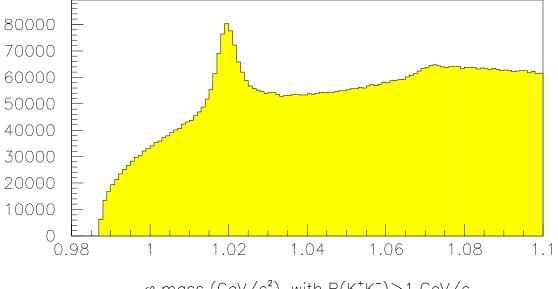
In $D_s \to \phi \pi$, helicity conservation forces the K_{ϕ}/π angle to be distributed like $\cos \theta^2$ in the ϕ rest frame. Background is randomly distributed so one makes a cut $|\cos \theta_{helicity}| > 0.2 - 0.55$

In $B \to D_s^* \pi_{fast}$ there is similarly a $\sin \theta^2$ distribution for the $\gamma \pi_{fast}$ angle in the D_s^* rest frame. Back- 1500 ground is flat with some peaking at -1 because it is correlated with γ 1000 energy, so one makes an asymmetric cut $[-1, -0.5] < \cos \theta_{helicity} < 500$ [0.78, 1.0]


Combinatorics

• For $D_s \to \phi(\rho, 3\pi)$ where there are no helicity cuts one can suppress random combinations by cutting on pion momentum.

- For photon combinatorics:
 - veto γ s that form a good $\pi^0 s$ with unused γ s in the event
 - increase the $E(\gamma)$ threshold when there are more combinatorics $(D_s^*(\gamma D_s), \rho^-(\pi^+\pi^0))$.
 - require a $p(\pi^0)$ threshold similarly $(D_s^- \to \phi \rho^-)$
 - limit photons to the best part of the detector: $|\cos \theta| < 0.71$


 $E_{\gamma} \ {
m from} \ D_s^*$

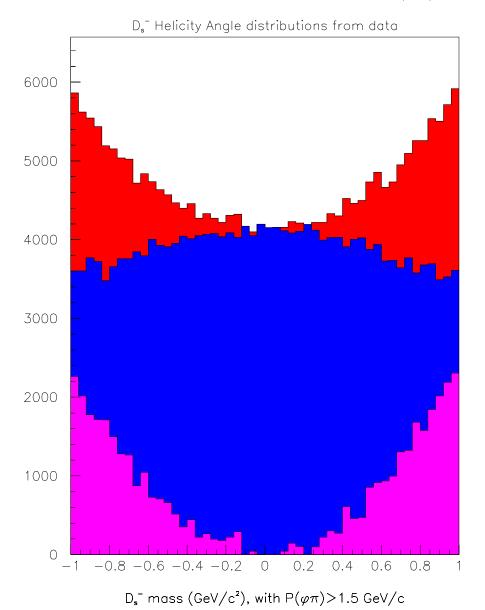
The fast π^0 is clean so that only the π^0 from $D_s^{\pm} \to \phi \rho^-$ needs a γ/π^0 veto, producing a 25% improvement in S^2/N . Several pieces of information of were synthesised into a likelihood for π^0 "goodness".



ϕ , $\phi\pi$ inclusive signals in data

A ϕ signal is clearly visible after a 3σ consistency cut on the K dE/dX:

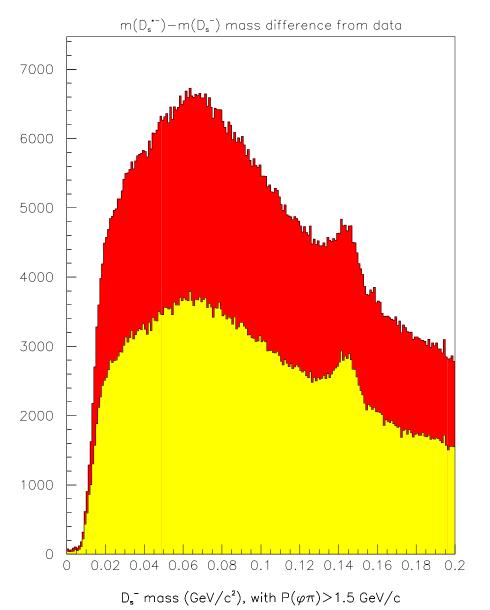
 φ mass (GeV/c²), with P(K⁺K⁻)>1 GeV/c



 φ mass (GeV/c²), with P(K⁺K⁻)>1 GeV/c

After a 10 MeV/ c^2 $m(\phi)$ cut, a D_s signal is evident, even if all charged tracks are accepted as pions, a $3\sigma dE/dX$ requirement improves the signal a bit, but the cut $|\cos \theta_{helicity}| > 0.5$ is much more powerful.

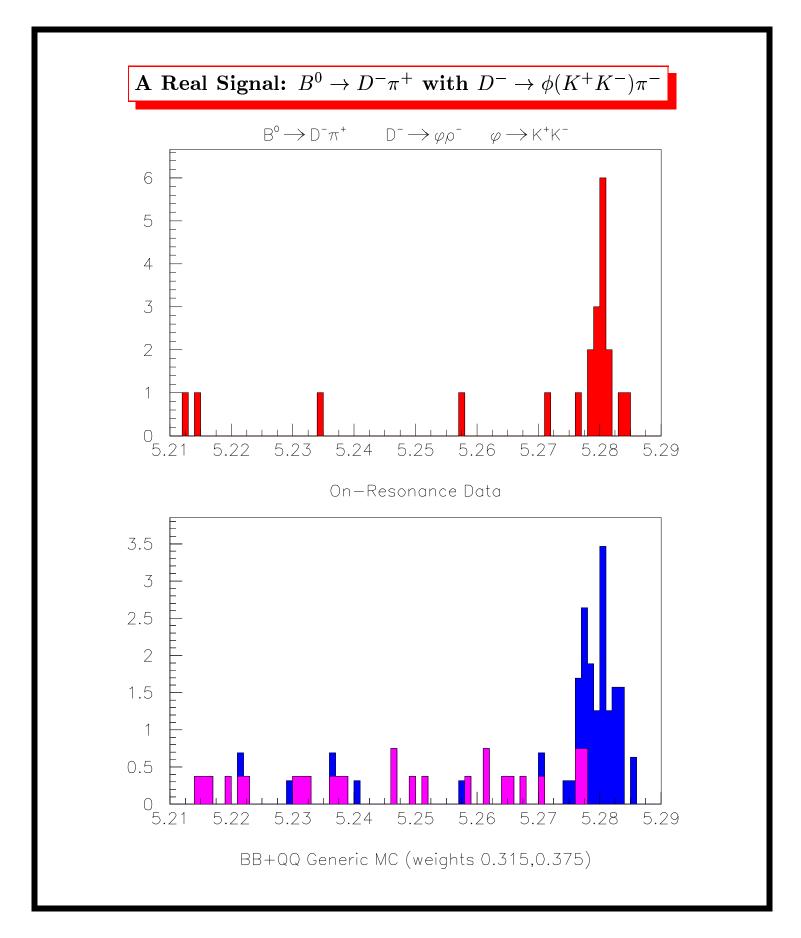
$\phi\pi$ Inclusive Peaks

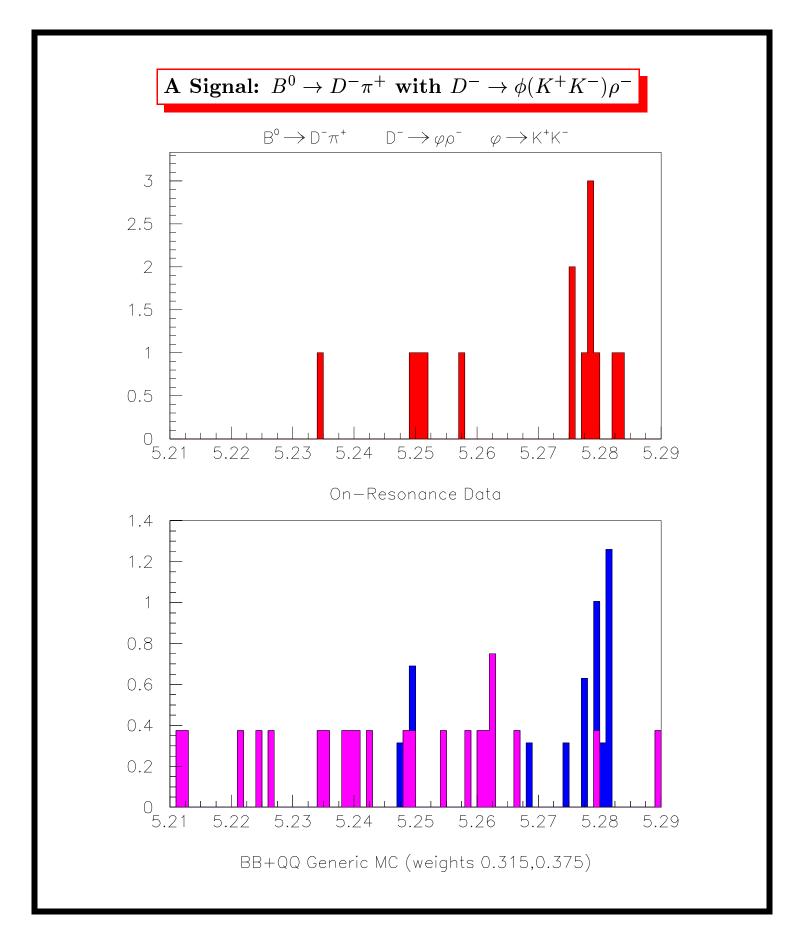

00/04/26 17.34

The topmost distribution is in a centerband (12 MeV) about the D_s mass, the second is the sideband, the lowest plot is the difference of the two.

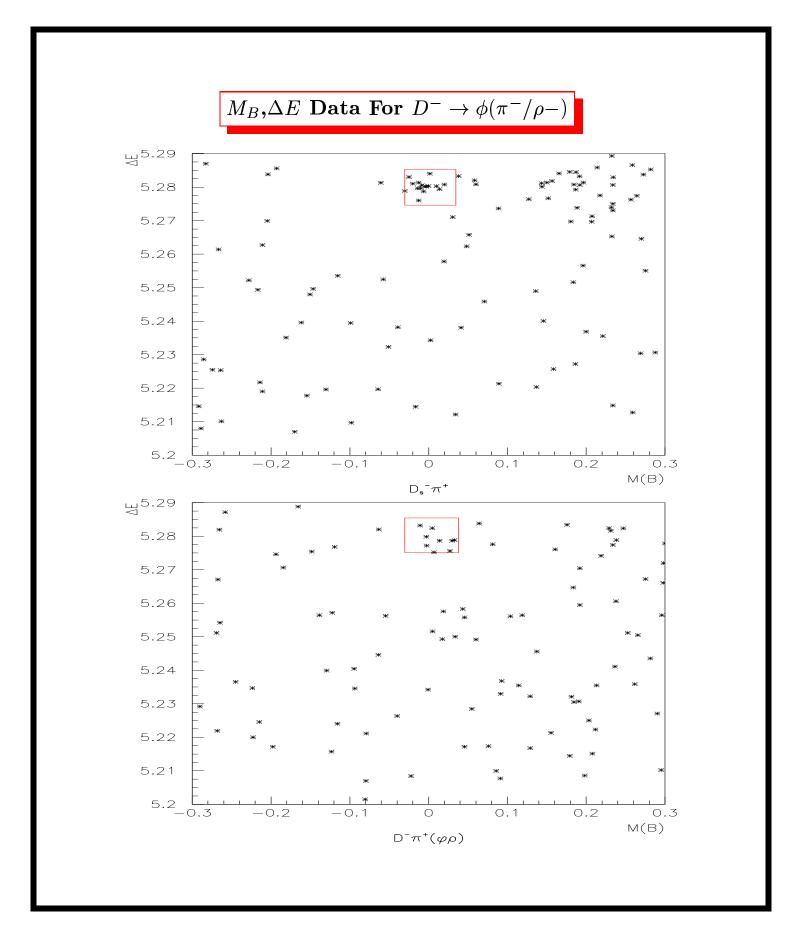
$\phi\pi$ Inclusive Peaks

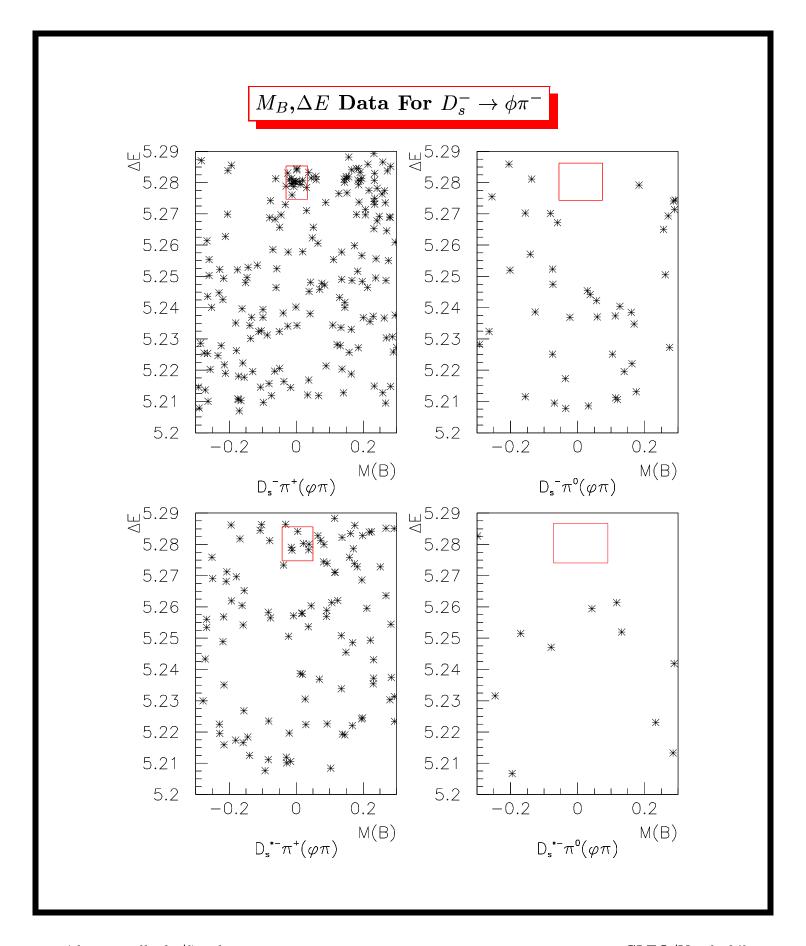
00/04/26 17.34

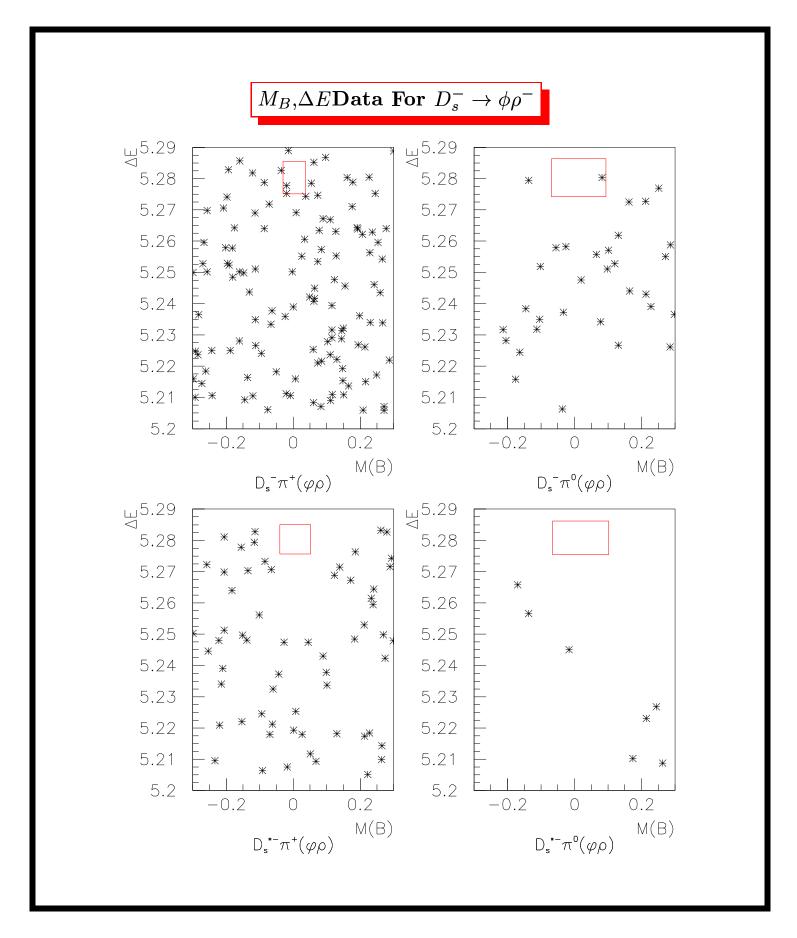

The upper distribution has a weak 3σ dEdX cut on the D_s 's pion, while the lower plot has a hard (0.5) cut on the the cosine of the D_s helicity angle.


Some Results

- Once we determined those quantities that can be used to reject backgrounds, we tune cuts on these variables (along with those on the signal region in the M_B , δE plane, and the mass intervals accepted for ϕ and $D_s^{(*)}$) by maximizing a Gaussian significance $Q = S^2/(S+B)$ assuming a branching ratio of 5×10^{-5} in calculating S.
- It is still nice to verify that the methodology and cuts chosen makes sense, so:

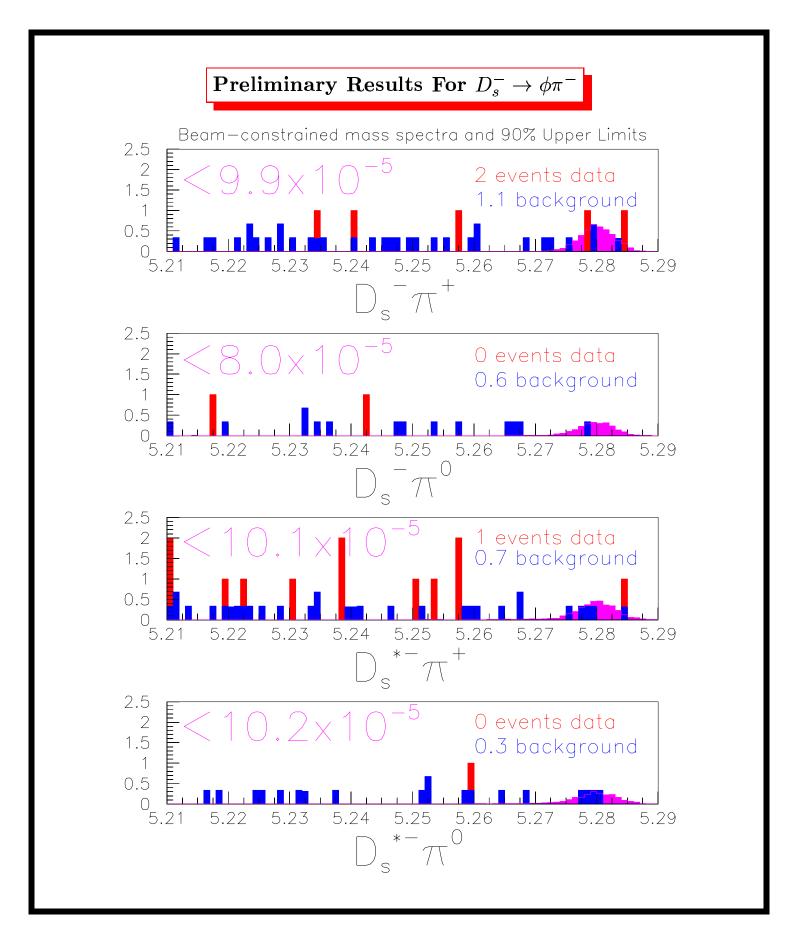

An Actual Observation: $B^0 \to D^-\pi^+$ with $D^- \to \phi(K^+K^-)\pi^-$

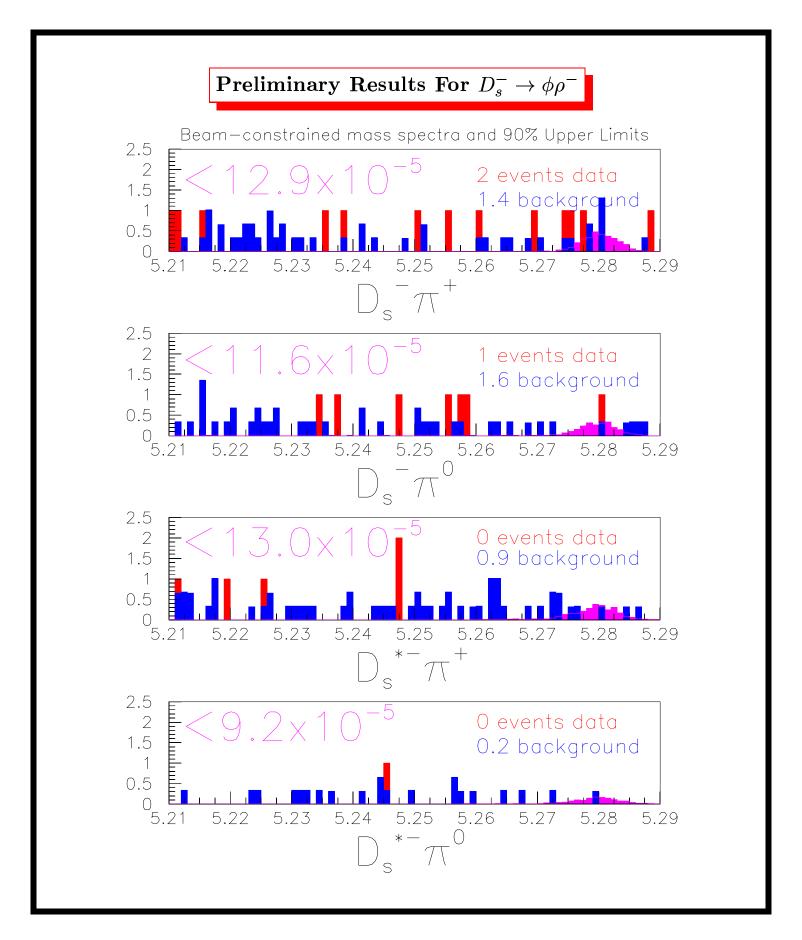

- This decay should appear with the branching ratio of $B(B^0 \to D^-\pi^+) \times B(D^- \to \phi\pi^-) \times B(\phi \to K^+K^-)$ of $((6.1 \pm 0.6) \times 10^{-3}) \times ((3.0 \pm 0.4) \times 10^{-3}) \times 0.491 = 9 \times 10^{-6}$ resulting in about 87 events in our data sample.
- Making the same cuts as used in the $B^0 \to D_s^- \pi^+$ with $D_s^- \to \phi(K^+ K^-) \pi^-$ decay chain (but centering the D mass cut) we see 16 events in the signal box.
- Simulation predicts a background of 1.5 continuum events on a signal of 14.5 events, data sidebands predict a background of 1.2 events.
- This yields s an experimentally determined efficiency for the channel of $(16.7 \pm 5.0)\%$ only 1.4σ away from that calculated for $B^0 \to D_s^- \pi^+$ with $D_s^- \to \phi(K^+ K^-) \pi^-$.



20

$$D_s^- \to \phi \pi^-$$
 Channels


Channel	$D_s^-\pi^+$	$D_s^-\pi^0$	$D_s^{*-}\pi^+$	$D_s^{*-}\pi^0$
$ \delta M_B <$	5.4	6.2	5.4	6.3
$ \Delta E <$	32	65	46	81
$ \delta m(\phi) $	9.7	10.0	10.7	9.5
$ \delta m(D_s) <$	13.5	12.5	11.3	10.8
$ \delta(m(D_s^*) - m(D_s)) < $			13.1	11.3
$ \cos \theta_{helicity}(D_s^-) >$	0.33	0.33	0.33	0.32
$ \cos \theta_B <$	0.92	0.92	0.91	0.92
Fisher<	0.75	0.71	0.79	0.69
$\cos\theta(\phi\pi_{fast}:D_s^-) >$	-0.81	-0.86	-0.82	-0.82
$\cos \theta_{helicity}(D_s^*) >$			-0.83	82
$D_s^* E_{\gamma} >$			91	81
$\cos\theta(\gamma(\pi^0_{fast})) <$	0.94	0.94	0.94	0.81
$R_2 + \cos \theta_{thrust} <$	1.32	1.24	1.30	1.21


Table 1: Units for mass are MeV/c^2 , units for momentum are MeV/c

$D_s^- o \phi ho^-$ Channels

Channel	$D_s^-\pi^+$	$D_s^-\pi^0$	$D_s^{*-}\pi^+$	$D_s^{*-}\pi^0$
$ \delta M_B <$	5.0	6.1	4.6	5.4
$ \Delta E <$	34	81	46	84
$ \delta m(\phi) $	10	8.8	7.9	8.2
$ \delta m(D_s) <$	18	20	20	18
$\left \left \delta(m(D_s^*) - m(D_s)) \right < \right $			11.7	13.1
$ \cos \theta_B <$	0.9	0.9	0.9	0.9
$P(\pi^0) >$	250	270	250	190
Fisher<	0.78	0.68	0.77	0.66
$\cos\theta(\phi\pi_{fast}:D_s^-) >$	-0.93	-1.00	-0.99	-0.96
$\cos \theta_{helicity}(D_s^*) >$			-0.80	72
$D_s^* E_{\gamma} >$			85	100
$\cos\theta(\gamma(\pi^0_{fast})) <$	0.94	0.94	0.94	0.81
$R_2 + \cos \theta_{thrust} <$	1.26	1.19	1.29	1.13
Slow π_0 veto >	0.10	0.05	0.06	0.03
Slow $\pi_0 \gamma$ shape >	0.82	0.82	0.82	0.82
Slow π_0 Endcap $E_{\gamma} >$	0.12	0.12	0.12	0.12

Table 2: Units for mass are MeV/c^2 , units for momentum are MeV/c

Background Estimation

For a background estimate we take an average of several estimates:

- We count events in the Grand Side Band or GSB ($|\delta E| < 0.2 \,\text{GeV}$, $m_B > 5.2 \,\text{GeV/c}^2$) excluding the signal region (SR) and a safety margin of the same area around it. This number is scaled by the ratio of areas.
- We count events in D_s sidebands with m_B and δE in the SR, and scale linearly.
- We count events in D_s sidebands with m_B and δE in the GSB, and scale linearly.
- We count $B\bar{B}$ and $q\bar{q}$ generic MC events (and also cross-check consistency of the previous three methods)

Preliminary Results

$ ho\phi$ Channels	$D_s^-\pi^+$	$D_s^-\pi^0$	$D_s^{*-}\pi^+$	$D_s^{*-}\pi^0$
Data	2	1	0	0
Background	1.42	1.62	0.90	0.22
90% UL	4.17	3.08	2.3	2.3
MC $@5 \times 10^{-5}$	1.62	1.33	0.89	1.25
$\mathcal{BR}(B \to D_s^{(*)}\pi)$	12.9×10^{-5}	11.6×10^{-5}	12.9×10^{-5}	9.2×10^{-5}
$\pi\phi$ Channels	$D_s^-\pi^+$	$D_s^-\pi^0$	$D_s^{*-}\pi^+$	$D_s^{*-}\pi^0$
Data	2	0	1	0
Background	1.07	0.64	0.72	0.29
90% UL	4.40	2.30	3.39	2.30
MC $@5 \times 10^{-5}$	2.22	1.44	1.68	1.13
$\mathcal{BR}(B \to D_s^{(*)}\pi)$	9.9×10^{-5}	8.0×10^{-5}	10.1×10^{-5}	10.2×10^{-5}
$3\pi\phi$ Channels	$D_s^-\pi^+$	$D_s^-\pi^0$	$D_s^{*-}\pi^+$	$D_s^{*-}\pi^0$
Data	0	0	0	0
Background	0	0	0	0
$90\%~\mathrm{UL}$	2.3	2.3	2.3	2.3
MC $@5 \times 10^{-5}$	0.065	0.061	0.082	0.14
$\mathcal{BR}(B \to D_s^{(*)}\pi)$	177×10^{-5}	189×10^{-5}	140×10^{-5}	82×10^{-5}
$\Sigma \phi$ Channels	7.3×10^{-5}	5.3×10^{-5}	5.9×10^{-5}	4.6×10^{-5}

Preliminary Combined Results

With CLEO's 9.7×10^6 $B\bar{B}s$ we determine upper limits, including only statistical contributions, of:

B decay	$90\%~\mathrm{UL}~\mathcal{BR}$			
topology	η channels	ϕ channels	All channels	
$D_s^-\pi^0$	21.2×10^{-5}	5.4×10^{-5}	5.2×10^{-5}	
$D_s^-\pi^+$	29.5×10^{-5}	7.5×10^{-5}	8.5×10^{-5}	
$D_s^{*-}\pi^0$	27.9×10^{-5}	4.5×10^{-5}	4.8×10^{-5}	
$D_s^{*-}\pi^+$	59.3×10^{-5}	8.9×10^{-5}	7.9×10^{-5}	

Including systematics of about 30% (dominated by $\mathcal{BR}(D_s \to \phi \pi)$):

B decay	90% UL \mathcal{BR}	CLEO	Theory 1995
topology	with systematics	1992	$V_{ub} = 0.0035$
$D_s^-\pi^0$	5.1×10^{-5}	$20. \times 10^{-5}$	2.7×10^{-5}
$D_s^-\pi^+$	8.9×10^{-5}	$27. \times 10^{-5}$	5.6×10^{-5}
$D_s^{*-}\pi^0$	3.9×10^{-5}	$32. \times 10^{-5}$	1.9×10^{-5}
$D_s^{*-}\pi^+$	7.5×10^{-5}	$44. \times 10^{-5}$	7.2×10^{-5}

Using the calculations of Z.Z.Xing (hep-ph/9502339) and assuming that $\mathcal{BR}(D_s^{(*)}\pi)$ scales as $|V_{ub}/V_{cb}|^2$ we estimate:

$$V_{ub}/V_{cb} < 0.135$$
 Preliminary (3)

Theoretical and experimental uncertainties contributing to Xing's results total at least O(50%) (my estimate).

Items For The Near Future

There are several other channels included in our current skim that we have not yet finished analyzing:

- $\mathbf{B^0} \to \mathbf{D_s^{(*)}}^{\mp} \mathbf{K^{\pm}}$. This decay proceeds by W-exchange followed by popping an $s\bar{s}$ pair from the background. Predictions are $O(10^{-6})$. The analysis is basically identical to $D_s^{(*)} \pi^+$.
- $\mathbf{B}^{\pm} \to \mathbf{D}_{\mathbf{s}}^{*\pm} \gamma$. This decay proceeds by W-annihilation. I have allready looked at the generic MC backgrounds for this process, it is very clean. Perhaps clean enough to increase the fraction of the D_s decays used to 25.4% using the η' channels.
- Introduce $D_s^- \to K_s^0 K^-, \overline{K^*} K^-$ channels an increase of perhaps 20% in sensitivity.
- Move on to $B \to D_s^{(*)-}(\omega/\eta/\rho^{\pm}/a_1)$ decays, with larger predicted rates. However, more combinatorics intrude as well as $B \to D_s X_c$ contributions (which can also help check normalization).