CLEO-c and CKM Physics

Karl M. Ecklund
Cornell University
WIN 2003
October 7, 2003
CLEO-c and CESR-c

What’s with the “-c”?
- CLEO detector
- Symmetric e^+e^- collider
 \(\sqrt{s} = 10.6 \text{ GeV} \)
- Add wigglers to improve damping and run at
 \(\sqrt{s} = 3-6 \text{ GeV} \)
- Access to charm threshold region
- Approved by National Science Board Feb 2003
- First Physics Run starts October 24, 2003
- 3+ year program
Context for CLEO-c

Flavor physics:
- Overconstrain V_{CKM}
- Inconsistency \rightarrow new physics
- Interpretation limited by strong interaction effects
Context for CLEO-c

Flavor physics:
- Overconstrain V_{CKM}
- Inconsistency \rightarrow new physics
- Interpretation limited by strong interaction effects

- $\sin 2\beta$ is clean
- $|V_{ub}|$ is not
- B mixing is not

Hadronic uncertainties confound the extraction of weak physics
- Non-perturbative QCD
- Perturbative QCD (on better ground)
Context for CLEO-c

Flavor physics:
- Overconstrain V_{CKM}
- Inconsistency → new physics
- Interpretation limited by strong interaction effects
- Measurements in Charm decays can validate QCD corrections needed to extract Weak physics from observables

$\sin 2\beta$ is clean
$|V_{ub}|$ is not
B mixing is not
Hadronic uncertainties confound the extraction of weak physics
- Non-perturbative QCD
- Perturbative QCD (on better ground)
UT Constraint from B mixing

$$\Delta M_d = 0.50 \text{ ps}^{-1} \left[\frac{\sqrt{B_{B_d}} f_{B_d}}{200 \text{ MeV}} \right]^2 \left[\frac{|V_{td}|}{8.8 \times 10^{-3}} \right]^2$$

$$\frac{\sigma(|V_{td}|)}{|V_{td}|} = 0.5 \frac{\sigma(\Delta M_d)}{\Delta M_d} \oplus \frac{\sigma(f_B \sqrt{B_{B_d}})}{f_B \sqrt{B_{B_d}}}$$
UT Constraint from B mixing

\[\Delta M_d = 0.50 \text{ps}^{-1} \left[\frac{\sqrt{B_{B_d}} f_{B_d}}{200 \text{MeV}} \right]^2 \left[\frac{|V_{td}|}{8.8 \times 10^{-3}} \right]^2 \]

\[
\frac{\sigma (|V_{td}|)}{|V_{td}|} = \frac{\sigma (\Delta M_d)}{\Delta M_d} \oplus \frac{\sigma (f_B \sqrt{B_{B_d}})}{f_B \sqrt{B_{B_d}}} \]

1.2% ~15% (LQCD)
UT Constraint from B mixing

\[\Delta M_d = 0.50 \text{ps}^{-1} \left[\frac{\sqrt{B_{B_d}}} {200 \text{MeV}} \right]^2 \left[\frac{|V_{td}|} {8.8 \times 10^{-3}} \right]^2 \]

\[\sigma \left(|V_{td}| \right) = 0.5 \frac{\sigma \left(\Delta M_d \right)} {\Delta M_d} \oplus \frac{\sigma \left(f_B \sqrt{B_{B_d}} \right)} {f_B \sqrt{B_{B_d}}} \]

1.2% ~15% (LQCD)

- Lattice QCD predicts decay constants \(f_{D(s)} / f_{B(s)} \)
- If precise measurements of \(f_D \) and \(f_{Ds} \) exist, then our confidence in non-perturbative QCD calculations needed to make constraints on the UT is increased.
- Even better if \(B_s \) mixing is observed!
UT Constraint from $|V_{ub}|$

$|V_{ub}|$ from $B \rightarrow \pi \ell \nu$:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_\pi^3 |f_+(q^2)|^2$$

Form factor $f(q^2)$:
- Not well known
- Limits $|V_{ub}|$ precision
- Predicted by LQCD
|V_{ub}| from B → π l ν:

\[
\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_{\pi}^3 |f_+(q^2)|^2
\]

Form factor \(f(q^2) \):
- Not well known
- Limits \(|V_{ub}|\) precision
- Predicted by LQCD

- Absolute rate and shape is a stringent test of theory
- Heavy quark symmetry relates D → π l ν to B → π l ν
- A precise measurement of D → π l ν can calibrate LQCD and allow a precise extraction of \(|V_{ub}|\) from B → π l ν
Status of CKM Matrix

<table>
<thead>
<tr>
<th>Current V_{CKM} from direct Measurements</th>
<th>-no unitarity imposed</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>$\delta V_{ud}/V_{ud}$</th>
<th>0.1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta V_{us}/V_{us}$</td>
<td>1%</td>
</tr>
<tr>
<td>$\delta V_{ub}/V_{ub}$</td>
<td>17%</td>
</tr>
<tr>
<td>$\delta V_{cd}/V_{cd}$</td>
<td>7%</td>
</tr>
<tr>
<td>$\delta V_{cs}/V_{cs}$</td>
<td>11%</td>
</tr>
<tr>
<td>$\delta V_{cb}/V_{cb}$</td>
<td>5%</td>
</tr>
<tr>
<td>$\delta V_{td}/V_{td}$</td>
<td>36%</td>
</tr>
<tr>
<td>$\delta V_{ts}/V_{ts}$</td>
<td>39%</td>
</tr>
<tr>
<td>$\delta V_{tb}/V_{tb}$</td>
<td>29%</td>
</tr>
</tbody>
</table>
Status of CKM Matrix

<table>
<thead>
<tr>
<th>Current V_{CKM}</th>
<th>From direct Measurements</th>
<th>-no unitarity imposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1%</td>
<td>$\delta V_{ud}/V_{ud}$</td>
<td></td>
</tr>
<tr>
<td>$\delta V_{cd}/V_{cd}$</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>$\delta V_{td}/V_{td}$</td>
<td>36%</td>
<td></td>
</tr>
<tr>
<td>$\delta V_{us}/V_{us}$</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>$\delta V_{cs}/V_{cs}$</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>$\delta V_{ts}/V_{ts}$</td>
<td>39%</td>
<td></td>
</tr>
<tr>
<td>$\delta V_{ub}/V_{ub}$</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>$\delta V_{cb}/V_{cb}$</td>
<td>5%</td>
<td></td>
</tr>
</tbody>
</table>

CLEO-c will redefine 2nd generation elements and enable improvements in 3rd generation.
Status of CKM Matrix

Current V_{CKM} from direct measurements - no unitarity imposed

$\delta V_{ud}/V_{ud} = 0.1\%$

$\delta V_{cd}/V_{cd} = 7\%$

$\delta V_{td}/V_{td} = 36\%$

$\delta V_{us}/V_{us} = 1\%$

$\delta V_{cs}/V_{cs} = 11\%$

$\delta V_{ts}/V_{ts} = 39\%$

$\delta V_{ub}/V_{ub} = 17\%$

$\delta V_{cb}/V_{cb} = 5\%$

$\delta V_{tb}/V_{tb} = 29\%$

CLEO-c will redefine 2nd generation elements
And enable improvements in 3rd generation

October 7, 2003

CLEO-c and CKM Physics

Karl Ecklund
Status of CKM Matrix

Current V_{CKM} from direct measurements - no unitarity imposed

- $\delta V_{ud}/V_{ud} = 0.1\%$
- $\delta V_{cd}/V_{cd} = 7\%$
- $\delta V_{td}/V_{td} = 36\%$
- $\delta V_{us}/V_{us} = 1\%$
- $\delta V_{cs}/V_{cs} = 11\%$
- $\delta V_{ts}/V_{ts} = 39\%$
- $\delta V_{ub}/V_{ub} = 17\%$
- $\delta V_{cb}/V_{cb} = 5\%$
- $\delta V_{tb}/V_{tb} = 29\%$

CLEO-c will redefine 2nd generation elements and enable improvements in 3rd generation.
CESR-c

6/12 Wigglers E=1.5-3 GeV
Installed Spring’03
6 more March-May’04
CESR-c Design Luminosity:

<table>
<thead>
<tr>
<th>\sqrt{s} (GeV)</th>
<th>$L \left(10^{32} \text{ cm}^{-2} \text{s}^{-1}\right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>2.0</td>
</tr>
<tr>
<td>3.77</td>
<td>3.0</td>
</tr>
<tr>
<td>4.1</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Machine performance: $\Delta E_{\text{beam}} \sim 1.6 \text{ MeV at } \psi' \text{ (6 wigglers)}$
CLEO-c Detector

State of Art Detector:
- Drift Chamber Tracking (1 Tesla)
- RICH Particle ID
- Crystal EM Calorimetry
- 93% of solid angle
- Only small changes from CLEO III
 - B field 1.5 → 1 T
 - Silicon → ZD
New Inner Detector

- Replaced Silicon Vertex Detector May 2003
- 6 stereo layers:
 - $r = 5.3 \text{ cm} - 10.5 \text{ cm}$
 - 12-15° stereo angle
 - $|\cos \theta| < 0.93$
- 300, 10 mm cells
- 1% X_0 inner Al tube .8mm
- Helium-Propane (60:40)
- 20 µm Au-W sense wires
- 110 µm Au-Al field wires
- Outer Al-Mylar skin

Continuous tracking volume
Low mass (σ_p is MS limited)
Nothing to vertex at charm threshold!
CLEO III

Y(4S)

Typical Hadronic Event

Average:
- 10 tracks
- 10 showers
CLEO-c
ψ(3770)
Typical Hadronic Event

Average:
- 5 tracks
- 5 showers

Event Recorded September 29, 2003
Charm Threshold Region

- $D^+D^-, D^0\bar{D}^0$ at $\psi(3770)$
- $D_s^+D_s^-$ at $\sqrt{s}=4140$ MeV
- Potential for $\Lambda_c^+\Lambda_c^-$
- Will also run on J/ψ and possibly ψ'

DD cross section at $\psi(3770) \sim 5$ nb (Mark III)
$D_s\bar{D}_s$ cross section ~ 0.5 nb
CLEO-c Run Plan

Phase I: $\psi(3770) - 3$ fb$^{-1}$ ($\psi(3770) \rightarrow \bar{D}D$)
- 30 million DD events, 6 million tagged D decays
 (310 times MARK III)

Phase II: $\sqrt{s}=4140$ MeV - 3 fb$^{-1}$
- 1.5 million $D_s\bar{D}_s$ events, 0.3 million tagged D_s decays
 (480 times MARK III, 130 times BES)

Phase III: $\psi(3100) - 1$ fb$^{-1}$
- 1 Billion J/ψ decays
 (170 times MARK III, 20 times BES II)

Now: Dec'02
- 5 pb$^{-1}$ at $\psi(3770)$

Oct'03-Jan'04
- 50 pb$^{-1}$ on $\psi(3770)$
Tagging Technique - Tag Purity

\[\psi(3770) \rightarrow D \bar{D} \]

\[\sqrt{s} \sim 4140 \rightarrow D_s \bar{D}_s \]

- Charm mesons have many large branching ratios (~1 - 15%)
- High reconstruction efficiency

\[\Rightarrow \text{High net tagging efficiency} \sim 20\% \]

Anticipate 6M D tags and 0.3M \(D_s \) tags

- \(D \rightarrow K\pi \) tag: \(S/B \sim 5000/1 \)
- \(D_s \rightarrow \phi\pi (\phi \rightarrow KK) \) tag: \(S/B \sim 100/1 \)

Log Scale!
Absolute Charm Branching Ratios

Double tag technique:

Almost zero background in hadronic tag modes

Measure absolute $B(D \to X)$ with double tags

$$B = \frac{\text{# of } X}{\text{# of D tags}}$$

<table>
<thead>
<tr>
<th>Decay</th>
<th>\sqrt{s}</th>
<th>L (fb$^{-1}$)</th>
<th>Double tags</th>
<th>$\delta B / B$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 \to K^- \pi^+$</td>
<td>3770</td>
<td>3</td>
<td>53,000</td>
<td>2.4</td>
</tr>
<tr>
<td>$D^+ \to K^- \pi^+ \pi^+$</td>
<td>3770</td>
<td>3</td>
<td>60,000</td>
<td>7.2</td>
</tr>
<tr>
<td>$D_s \to \phi \pi$</td>
<td>4140</td>
<td>3</td>
<td>6,000</td>
<td>25</td>
</tr>
</tbody>
</table>

CLEO-c: potential to set absolute scale for heavy quark measurements

50 pb$^{-1} \to \sim 1,000$ events \Rightarrow x2 improvement (stat) on $D^+ \to K^- \pi^+ \pi^+$ PDG dB/B
f_{D_s} from Absolute $B(D_s \rightarrow \mu^+\nu)$

- Measure absolute $B(D_s \rightarrow \mu\nu)$
- Fully reconstruct one D (tag)
- Require one additional charged track and no additional photons
- Compute MM^2
- Peaks at zero for $D_s^+ \rightarrow \mu^+\nu$ decay
- Expect resolution of $\sim O(M_{\pi^0})$

V_{cs} (V_{cd}) known from unitarity to 0.1% (1.1%)

<table>
<thead>
<tr>
<th>Decay Constant</th>
<th>Reaction</th>
<th>Energy (MeV)</th>
<th>L (fb$^{-1}$)</th>
<th>$\delta f / f$ (%)</th>
<th>PDG</th>
<th>CLEO-c</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{D_s}</td>
<td>$D_s^+ \rightarrow \mu \nu$</td>
<td>4140</td>
<td>3</td>
<td>17</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>f_{D_s}</td>
<td>$D_s^+ \rightarrow \tau \nu$</td>
<td>4140</td>
<td>3</td>
<td>33</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>f_{D^+}</td>
<td>$D^+ \rightarrow \mu \nu$</td>
<td>3770</td>
<td>3</td>
<td>UL</td>
<td></td>
<td>2.3</td>
</tr>
</tbody>
</table>

October 7, 2003 CLEO-c and CKM Physics Karl Ecklund 18
Semileptonic Decays: $|V_{CKM}|^2 |f(q^2)|^2$

Measurement of complete set of charm $P \rightarrow P l\nu$ and $P \rightarrow V l\nu$ absolute form factor magnitudes and slopes to a few %:

- almost no background
- one experiment

Stringent test of theory!

October 7, 2003 CLEO-c and CKM Physics Karl Ecklund 19
CLEO-c Impact on Semileptonic $\delta B/B$

1: $D^0 \rightarrow K^- e^+ \nu$
2: $D^0 \rightarrow K^{*-} e^+ \nu$
3: $D^0 \rightarrow \pi^- e^+ \nu$
4: $D^0 \rightarrow \rho^- e^+ \nu$
5: $D^+ \rightarrow K^0 e^+ \nu$
6: $D^+ \rightarrow K^{*0} e^+ \nu$
7: $D^+ \rightarrow \pi^0 e^+ \nu$
8: $D^+ \rightarrow \rho^0 e^+ \nu$
9: $D_s \rightarrow K^0 e^+ \nu$
10: $D_s \rightarrow K^{*0} e^+ \nu$
11: $D_s \rightarrow \phi e^+ \nu$

CLEO-c will make significant improvements in precision for each absolute charm semileptonic branching ratio.
Determining $|V_{cs}|$ and $|V_{cd}|$

Combine semileptonic and leptonic decays - eliminating V_{CKM}

$\Gamma(D^+ \to \pi l \nu) / \Gamma(D^+ \to l \nu)$ independent of $|V_{cd}|$

Test rate predictions at ~4% level

$\Gamma(D_s \to \phi l \nu) / \Gamma(D_s \to l \nu)$ independent of $|V_{cs}|$

Test rate predictions at ~4.5% level

Test amplitudes at 2% level

Stringent test of theory - If theory passes test ...

$D^0 \to K^- e^+ \nu$ \hspace{1cm} $\delta V_{cs}/V_{cs} = 1.6\%$ (now: 11\%)

$D^0 \to \pi^- e^+ \nu$ \hspace{1cm} $\delta V_{cd}/V_{cd} = 1.7\%$ (now: 7\%)

Use CLEO-c validated lattice to calculate B semileptonic form factor

B factories can use $B \to \rho/\pi/\eta/l\nu$ for precise $|V_{ub}|$ determination.
Inclusive Semileptonic Decays

- Significantly improved $D \rightarrow X e$ spectrum possible using tagged D's
- Backgrounds in $B \rightarrow X l \nu$ analyses ($b \rightarrow c \rightarrow l$)
- Test of HQET: D^0, D^+, D_s^+ same to few %
 - D_s and D^+ weak annihilation contribution - a concern for $|V_{ub}|$ from E_1 endpoint
 - Inclusive spectra + HQET used for $|V_{cb}|$ from $b \rightarrow c l \nu$

Also can measure B_{SL} to get Γ_{SL}
- currently no measurement for D_s

October 7, 2003 CLEO-c and CKM Physics Karl Ecklund 22
Strong Phases in Hadronic D

- **Methods to measure** γ in $B^{\pm} \rightarrow (B^0 K^{\pm}; (B^0 \rightarrow f$

- **Aided by measurements of strong phases in hadronic D decays:**
 - $D \rightarrow$ many Atwood & Soni
 PRD 68, 033003
 - $D^0 \rightarrow K^{*\pm} K$ Rosner & Suprun
 PRD 68, 054010

- **CLEO-c:** advantage of quantum coherence:
 $\psi(3770) \rightarrow D\bar{D} ; J^P=1^-$

Interference of K^{*+} & K^{*-} bands
Potential Impact

- Top: current experimental and theoretical uncertainties

- Bottom: current experiment with 2% theory uncertainties – perhaps possible with LQCD calibrated with CLEO-c data
Potential Impact on V_{CKM}

Current V_{CKM} From direct Measurements - no unitarity imposed

- $\delta V_{ud}/V_{ud} = 0.1\%$
- $\delta V_{cd}/V_{cd} = 7\%$
- $\delta V_{td}/V_{td} = 36\%$
- $\delta V_{ud}/V_{ud} = 0.1\%$
- $\delta V_{us}/V_{us} = 1\%$
- $\delta V_{cs}/V_{cs} = 11\%$
- $\delta V_{ts}/V_{ts} = 39\%$
- $\delta V_{ub}/V_{ub} = 17\%$
- $\delta V_{cb}/V_{cb} = 5\%$
- $\delta V_{tb}/V_{tb} = 29\%$

CLEO-c will redefine 2nd generation elements
And enable improvements in 3rd generation

October 7, 2003 CLEO-c and CKM Physics Karl Ecklund 25
Potential Impact on V_{CKM}

Current V_{CKM}

From direct Measurements
-no unitarity imposed

Future V_{CKM}

$\delta V_{ud}/V_{ud}$ 0.1%
$\delta V_{cd}/V_{cd}$ 2%
$\delta V_{td}/V_{td}$ 5%
$\delta V_{us}/V_{us}$ 1%
$\delta V_{cs}/V_{cs}$ 2%
$\delta V_{ts}/V_{ts}$ 5%
$\delta V_{ub}/V_{ub}$ 5%
$\delta V_{cb}/V_{cb}$ 3%
$\delta V_{tb}/V_{tb}$ 29%

V_{us}/V_{us} 1%
V_{cd}/V_{cd} 2%
V_{td}/V_{td} 5%
V_{ub}/V_{ub} 5%
V_{cb}/V_{cb} 3%
V_{tb}/V_{tb} 29%

CLEO-c will redefine 2nd generation elements
And enable improvements in 3rd generation

October 7, 2003 CLEO-c and CKM Physics Karl Ecklund 25
Summary

• The CLEO detector is state of the art, understood at a precision level, and collecting data in the cc resonance region.

• CLEO has a long history of weak decay and CKM physics interests that will carry over to the CLEO-c program
 - CKM physics
 • semileptonic D decays: spectra, form factors, $|V_{cs}|$ & $|V_{cd}|$
 • Leptonic decays: f_D, f_{Ds} informing B mixing interpretation
 - Enabling measurements of Hadronic D decays
 • Strong Phases to inform γ determinations in $B \to DK$
 • Measurement of absolute branching fractions