Recent $\Upsilon(1S - 3S)$ Results

and Search for X(3872) at CLEO

Amiran Tomaradze

(Northwestern University)

Representing the CLEO Collaboration

Introduction

- Heavy quarkonia ($c\bar{c}$ charmonium, $b\bar{b}$ bottomonium) provide the best means of testing QCD, both
- the validity of perturbative QCD and potential models, and
- lattice QCD calculations.
- Bottomonium (bb) is better then charmonium ($c\bar{c}$), both because it has smaller relativistic problems ($< v^2/c^2 > \approx 0.1$ versus ≈ 0.2) and smaller strong coupling constant ($\alpha_s \approx 0.2$ versus ≈ 0.35).
- There is much less high precision spectroscopic information available for bottomonium. No $b\bar{b}$ singlet states are known, and very few hadronic and radiative decays are known. Nevertheless, progress is being made through recently taken $\Upsilon(nS)$ data with CLEO III.

The Upsilon System - Bottomonium

- Rich spectroscopy
- Many transitions hadronic, radiative

CLEO III Data

– Size of CLEO III data sets are shown by the red columns, in million of events, taken at $\Upsilon(3S)$, $\Upsilon(2S)$, $\Upsilon(1S)$ respectively, and compared to the data sets of other experiments.

Scope of Talk

- Measurement of the $B[Y(nS)] \rightarrow \mu^{+}\mu^{-}$
- Production of J/ψ from $\Upsilon(1S)$
- New narrow state X(3872)

Measurement of $B[\Upsilon(nS) \to \mu^+\mu^-]$

- Leptonic (Γ_{ll}) and total widths (Γ) of $\Upsilon(n^3S_1)$ resonances are not very well established (4-16% relative errors).
- Γ and Γ_{ee} enter many PQCD calculations.
- Precise measurement of $B(l^+l^-)$ allows precise determination of $\Gamma(\Upsilon(nS))$ (also need precise Γ_{ee} measurement, expect from CLEO soon).

$$\Gamma = \Gamma_{ll}/B_{ll} = \Gamma_{ee}/B_{\mu\mu}$$
 (assuming lepton universality)

• Measure decay rate to muon pairs relative to hadronic decay rate:

$$\bar{B}_{\mu\mu} = \frac{\Gamma_{\mu\mu}}{\Gamma_{had}} = \frac{N(\Upsilon \to \mu^{+}\mu^{-})/\epsilon_{\mu\mu}}{N(\Upsilon \to hadrons)/\epsilon_{had}}$$

$$B_{\mu\mu} = \frac{\Gamma_{\mu\mu}}{\Gamma} = \frac{\Gamma_{\mu\mu}}{\Gamma_{had}(1 + 3\Gamma_{\mu\mu}/\Gamma_{had})} = \frac{\bar{B}_{\mu\mu}}{1 + 3\bar{B}_{\mu\mu}}$$

Measurement of $B[\Upsilon(nS) \to \mu^+\mu^-]$

	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$
$B_{\mu\mu}(\%)$ CLEO	$2.49 \pm 0.02 \pm 0.07$	$2.03 \pm 0.03 \pm 0.08$	$2.39 \pm 0.07 \pm 0.10$
$B_{\mu\mu}(\%)$ PDG	2.48 ± 0.06	1.31 ± 0.21	1.81 ± 0.17

- $\Upsilon(1S)$ branching fraction agrees with the PDG average. Significant discrepancy observed in case of $\Upsilon(2S)$ and $\Upsilon(3S)$.
- The new branching fractions combined with the PDG values of $\Gamma_{ee}\Gamma_{had}/\Gamma$ lead to the following values of the total widths $\Gamma[\Upsilon(nS)]$:

$$\Gamma(1S) = (52.8 \pm 1.8) \text{ keV}$$
 (53.0 ± 1.5) keV
 $\Gamma(2S) = (29.0 \pm 1.6) \text{ keV}$ (43 ± 6) keV
 $\Gamma(3S) = (20.3 \pm 2.1) \text{ keV}$ (26.3 ± 3.4) keV

Production of J/ψ in $\Upsilon(1S)$

- CDF (1992-1994) observes J/ψ production rates 10 times higher then the theoretical predictions.
- <u>Braaten</u> and <u>Fleming</u> (1995) propose the color octet mechanism as an explanation. The $c\bar{c}$ pair is produced in a color octet, and radiates a soft gluon to become a singlet.
- Calculations inconsistent with photoproduction of J/ψ at HERA (1996), with J/ψ polarization at CDF (2000), and $e^+e^- \to J/\psi + X$ at BaBar and Belle (2001).
- <u>Fleming</u>, <u>Leibovitch</u> and <u>Mehen</u> (2003) propose multiple gluon emission mechanism to fix some of these disagreements.

Production of J/ψ in $\Upsilon(1S)$

At the $\Upsilon(1S)$, J/ψ can be produced from:

$$-\Upsilon(1S) \to ggg, \Upsilon(1S) \to \gamma^* \to \bar{q}q$$

- continuum production $e^+e^- \to J/\psi + X$.

$$B_{\mu\mu}[\Upsilon(1S) \to J/\psi + X] = (6.9 \pm 0.5 \pm 0.8) \times 10^{-4}$$

$$B_{ee}[\Upsilon(1S) \to J/\psi + X] = (6.1 \pm 0.5 \pm 0.7) \times 10^{-4}$$

$$B[\Upsilon(1S) \to J/\psi + X] = (6.4 \pm 0.4 \pm 0.6) \times 10^{-4}$$

These branching fractions include feed-down from other charmonia.

Production of J/ψ in $\Upsilon(1S)$

- Color octet model predictions of branching fraction are in agreement with above measurements.
- Continuum subtracted J/ψ momentum spectra shows no indication of peaking at large x values, as predicted by color octet model.

New Narrow State X(3872)

• Belle Collaboration observed a narrow state in:

$$B^{+-} \to K^{+-} X(3872), \ X(3872) \to \pi^+ \pi^- J/\psi, \ J/\psi \to l^+ l^-$$

$$M = 3872.0 \pm 0.6 \pm 0.5 \text{ (MeV)}, \ \Gamma < 2.3 \text{ MeV (90\% CL) Belle (03)}$$
 $M = 3873.4 \pm 1.4 \text{ (MeV)}, \ \Gamma < 3.1 \pm 0.2 \text{ (MeV)}, \ \text{BaBar (04)}$

• CDF and D0 Collaborations confirmed in:

$$\bar{p}p \to X(3872)..., X(3872) \to \pi^+\pi^-J/\psi$$

$$M = 3871.3 \pm 0.7 \pm 0.4 \text{ (MeV)}, \ \Gamma < 4.9 \pm 0.7 \text{ (MeV)} \ \text{CDF (03)}$$

 $M = 3871.8 \pm 3.1 \pm 3.0 \text{ (MeV)}, \ \Gamma < 17 \pm 3 \text{ (MeV)} \ \text{D0 (04)}$

- Identification of the quantum numbers is important to understand the structure:
- a conventional charmonium state? (<u>Eichten, Lane, Quigg</u>), (<u>Barnes</u> et al)
- a $D^0 \bar{D}^{*0}$ molecule? (Tornqvist et al)
- a charmonium hybrid state? (<u>Close</u> et al)

New Narrow State X(3872)

- CLEO searched for X(3872) state with $\sim 15 \ fb^{-1}$ of CLEO III data in:
- untagged $\gamma \gamma$ fusion: +C parity, $J^{PC} = 0^{++}, 0^{-+}, 2^{++}, 2^{-+}, ...$
- ISR production: $J^{PC} = 1^{--}$

- $-\gamma\gamma$ fusion selection: $\sim 86\% \gamma\gamma$ and < 0.5% ISR events.
- ISR selection: >99.5\% ISR and $\sim 14\% \gamma \gamma$ events.

New Narrow State X(3872)

- Exclusive channels $X \to \pi^+\pi^- J/\psi, J/\psi \to l^+ l^-$ were analysed.
- No signal was found.
- Following upper limits were set:
- Untagged $\gamma\gamma$ fusion (systematic errors are included):

$$(2J+1)\Gamma_{\gamma\gamma}B(X\to \pi^+\pi^-J/\psi) < 12.9 \text{ eV } (90\% \text{ CL})$$

- ISR production (systematic errors are included):

$$\Gamma_{ee} B(X \to \pi^+ \pi^- J/\psi) < 8.3 \text{ eV } (90\% \text{ CL})$$

BES determined the following upper limit for ISR production:

$$\Gamma_{ee}B(X \to \pi^+\pi^-J/\psi) < 10 \text{ eV } (90\% \text{ CL})$$
 (Phys. Lett. B579, 74 (2004)).

Summary

- Precision measurement of $B[\Upsilon(nS) \to \mu^+\mu^-]$ has been made for $\Upsilon(1,2,3S)$ narrow resonances. Evaluated $\Gamma(tot)$ of $\Upsilon(2,3S)$ resonances deviate from the PDG values. (submitted to PRL)
- Measurement of $\Upsilon(1S) \to J/\psi + X$ has been made. The issue of color octet versus color singlet mechanism remains unresolved. (PRD 70, 072001 (2004))
- X(3872) production has been searched for in untagged $\gamma\gamma$ fusion and ISR processes. No signals were found, and upper limits were set.