Recent CLEO Results on Tau Hadronic Decays

J.E. Duboscq Cornell University TauO4, Nara Japan

CLEO Hadronic Tau Results

- The CLEO3 Detector
- Tau Decays to 3 Charged Hadrons + V PRL90:181802,2003
 Structure of KKpi and Wess-Zumino PRL92:232001,2004

The CLEO3 Detector

Tau to $3h^{\pm} + V$

- K⁻K⁺π⁻ state probes Wess-Zumino term

The Data Sample: 3×10^6 tau pairs at Y(4s) produced at CESR

$$\tau^- \rightarrow h^- h^+ h^- v$$

Hadronic Particle ID

Combine RICH and dE/dx

 (Use only loose dE/dx for π in KKπ – KKK not a background!)

Output Data D*→Dπ, D→
 Kπ to obtain PID ∈ and fake rates

Cross check with wrong sign K in $T^- \rightarrow K^+ \pi^- \pi^+ V$ search

 $\tau^- \rightarrow h^- h^+ h^- v$

Event Selection

- Select 1 vs 3 tracks (using Thrust)
- Require $e/\mu/\rho/\pi$ tag
- Reject events w/ extra showers (3h π^0 rejection)
- \odot Missing momentum, E_{vis} cuts reject 2 γ background
- \odot K⁰ rejection for Knn mode
- Use KORALB, JETSET, GEANT for efficiency (use data for PID)

$$\tau^- \rightarrow h^- h^+ h^- v$$

3h Results

Mode	Data	т bgd	qq bgd	€(%)
πππ	43543	3207±57	152±12	10.27±0.08
Кпп	3454	1475±38	57±8	11.63±0.12
ΚΚπ	932	86±9	19±4	12.48±0.11
ККК	12	4±2	0.4±0.6	9.43±0.10

- Solution Use MC to get feed-across
- For KKK use data to get feedacross
- KKπ Substructure tuned to fit data

Very Good Data MC agreement
Used 3π, Κππ tuning from TAU02
Tuned KKπ substructure: Less K*, more ρ', no ρ''

3h Systematics

- 3% PID systematic
- ach syst for τ backgrounds, CC cuts
- PID Fake rate syst 0.1%/9%/2%/12% MC/Data studies, $\tau^- \rightarrow K^+ \pi^- \pi^+ v$ search

qq background – MC vs data above tau mass syst = 0.2%/ 2%/1%/3%

KK π substructure 2%

$$\tau^- \rightarrow h^- h^+ h^- v$$

Final 3h Results

 $B(\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \vee_{\tau}) = 9.13 \pm 0.05 \pm 0.46\%$ $B(\tau^{-} \rightarrow K^{-} \pi^{+} \pi^{-} \vee_{\tau}) = 0.384 \pm 0.014 \pm 0.038\%$ $B(\tau^{-} \rightarrow K^{-} K^{+} \pi^{-} \vee_{\tau}) = 0.155 \pm 0.006 \pm 0.009\%$ $B(\tau^{-} \rightarrow K^{-} K^{+} K^{-} \vee_{\tau}) < 3.7 \times 10^{-5} @90\% CL$

First explicit 3π result K $\pi\pi$ consistent w/OPAL and CLEO, higher than ALEPH Best precision on KK π Most stringent limit on KKK $\tau^- \rightarrow h^- h^+ h^- v$

KKπ Structure – Wess Zumino Anomaly

- Simplest τ decay picture: Vector (axial) current produces even (odd) numbers of pseudoscalars
- WZ Anomaly allows parity flip and allows a violation of this rule
- Golden mode $\tau \rightarrow \eta \pi \pi^0 v$ previously observed by
 CLEO (no axial component)
- σ→KKπν has both axial and vector (WZ)
 contribution
- ${\ensuremath{ \ensuremath{ \e$

Structure of tau to 3hv Decays

SM matrix element M∝L_µJ^µ Define: $Q^{\mu} = (q_1 + q_2 + q_3)^{\mu}$, $s_i = (q_i + q_k)$ 3h J is a sum over 4 form factors: $J=\sum f_{1}(q_{1},q_{2},q_{3},Q)F_{1}(s_{1},s_{2},Q)$ f, are kinematics – F, are Form Factors (physics) F_1, F_2 are $J^p = 1^-$ axial terms F_3 is the WZ vector $J^P = 1^+$ term $f3 = i \epsilon^{\alpha\beta\gamma} q_{1\alpha} q_{2\beta} q_{3\gamma}$ F_{4} is the scalar current $J^{P}=O^{+}$ (negligible) Kuhn, Mirkes, Z.PhysC56, 661(1992)

Structure of tau to 3hv Decays

- Integrate over v direction
- Two remaining Euler angles are kinematically determined
- [⊗] dΓ(T→KKπ)/dQ²ds₁ds₂ ∝ W_A(F₁,F₂)+W_B(F₃)
- No interference between Axial and WZ term
- Measurement possible entirely by using Dalitz plot and Q²

The Physics We Fit

Decker etal, ZPhysC.58,445(1993) Finkemeir & Mirkes, ZPhysC69, 243(1996)

 $a_1 \rightarrow \rho^{(\prime)} \pi , \rho^{(\prime)} \rightarrow KK$ $F_1 \propto BW_{a1}(Q^2) \times (BW_{\rho}(s_2) + \beta_{\rho}BW_{\rho'}(s_2))$

$$a_1 \rightarrow K^*K, K^* \rightarrow K\pi$$

 $F_2 \propto R_F BW_{a1}(Q^2) \times BW_{K^*}(s_1)$

 $\rho^{(','')} \rightarrow K^*K, \ K^* \rightarrow K\pi \qquad \rho^{(','')} \rightarrow \omega\pi, \ \omega \rightarrow KK$ $F_3 \propto \mathbb{R}_{B^{1/2}} \left(\mathbb{B}_{\rho}(\mathbb{Q}^2) + \lambda \mathbb{B}_{\rho'}(\mathbb{Q}^2) + \delta \mathbb{B}_{\rho''}(\mathbb{Q}^2) \right) \times (\mathbb{B}_{\omega}(s_2) + \alpha \mathbb{B}_{\kappa^*}(s_1))$

Five real fit parameters to KKπ, Kπ, KK massesJED Tau04KKπ - WZ Anomaly

The Data and Fit Procedure

- O Use 7.09x10⁶ τ pairs from CLEO3
 O
- 2255 signal events, 256±16±46 background
- Obtain consistent overall Branching Fraction
- Use unbinned extended Maximum Likelihood fit including background term
- \odot PDF = PDF(KK π) x PDF(KK) x PDF(K π)

Subset best known params for BW's

KKπ – WZ Anomaly

Fit Results

Shown is total fit and contributions from Axial and WZ components
 ≈1/2 is from WZ

 $\begin{array}{l} \alpha = 0.471 \pm 0.060 \pm 0.034 \\ \lambda = -0.314 \pm 0.073 \pm 0.080 \\ \delta = 0.101 \pm 0.020 \pm 0.156 \\ R_{B} = 3.23 \pm 0.26 \pm 1.90 \\ R_{F} = 0.98 \pm 0.15 \pm 0.36 \end{array}$

 $\frac{\Gamma_{WZ}}{\Gamma_{Tot}}$ =55.7±8.4±4.9%

Substructure Result

 Relative rates in Kuhn & Mirkes model
 So Axial current: $\tau \rightarrow a_1 (\rightarrow \rho^{(')} \pi, K^*K) ∨$ ⊘ Vector current (WZ): $\tau \rightarrow \rho^{(', '')} (\rightarrow K^*K, \omega\pi) ∨$ $R_{W7}^{\omega\pi} = 3.4 \pm 0.9 \pm 1.0\%$ $R_{Axial}^{\rho^{(,)}\pi} = 2.50.8 \pm 0.4\%$ $R_{W7} = 60.8 \pm 8.5 \pm 6.0\%$ $R_{Axial} = 46.8 \pm 8.4 \pm 5.2\%$ Decay dominated by K*K, 50/50 WZ and Axial B(a1 to K*K)=2.2±0.5% consistent w/ previous CLEO $\pi\pi^0\pi^0$ result Axial component much smaller than ALEPH CVC estimate

KKπ – WZ Anomaly

Angular Distributions

β: ∠ P(KKpi) in lab frame,
P_K×P_Π
θ: ∠ P(T) in lab, P(KKπ) in T
frame
ψ: ∠ P(T), P(lab) in KKπ frame
Angles are all expressible in terms of observables

Angles alone are not enough to extract WZ/Axial contributions

Using CLEO3, we have presented: ✓ First explicit $B(\tau \rightarrow 3\pi v)$ result $\sqrt{B(T \rightarrow K \pi \pi v)}$ consistent w/OPAL and CLEO, higher than ALEPH \checkmark Most stringent limit on $\tau \rightarrow KKKV$ ✓ Best precision on $B(T \rightarrow KK\pi v)$ \checkmark First Study of WZ and Axial parts of $\tau \rightarrow KK\pi v$ \checkmark Breakdown of KK π in Kuhn+Mirkes model