Search for the Lepton Flavor Viloating B Decays $B^{\circ} \rightarrow \tau$ and $B^{\circ} \rightarrow e\tau$ at CLEO2

J.E.Duboscq Cornell University TAU04, Nara Japan

The Physics: B -> l T

- We search for the decays B^0 → τ and B^0 → $e\tau$ in all charge
 combinations
- This decay is forbidden in the Standard Model with massless neutrinos

- With massive neutrinos, and mixing, it is still expected to be suppressed
- Observation would indicate interesting new physics

CLEO2 Data and Detector

- Data is from CLEO2
- 9.6x10⁶ BB from Y(4s) resonance
- 4.5 /fb 60 MeV below resonance for continuum, 2 photon
 background
- Use missing momentum cut for 2photon bgd
- Use Lumi/E² scaling

 $B \rightarrow \ell \tau$

Malysis Technique

- Search for final states (e)⁺ T⁻, (e)⁻ T⁺
- \odot Use T decay modes: $T \rightarrow VV$ and $T \rightarrow eVV$
- Denote modes by (I,I') for B→IT, T→I' VV
- In B rest frame, primary l is monoenergetic
- In lab frame, 2.2 GeV < P(l) < 2.5 GeV</p>
- Secondary l' required to have p(e)> 0.6 GeV or P()> 1.0 GeV for PID
- P_{vv} is event missing E,P use E(beam)
- Use 2 Neural Nets: NN_{BB} and NN_{cont}

Continuum Suppression

- Continuum Suppression NN_{cont}
 - Input: R2 (ratio of 2nd and 0th Fox Wolfram Moments)
 - Input: Event Sphericity
 - Input: Event Thrust
 - Input: cos of angle between p(l)-p(l') and thrust axis of rest of event
 - Input: cos of angle between neutrino pair and lepton pair

0

Train with Signal and generic Continuum MC

BB Suppression

- BB suppression NN_{BB}
 - Input: Beam Constrained B candidate Mass
 - Input: Missing Candidate B energy
 - Input: cos of angle between l and -(momentum of non Candidate B)
- Train with Signal and BB generic Monte Carlo

For each mode, accept or reject in Neural Net plane

SideBand Data/MC Check

- Use Primary Lepton Sidebands (2.0<p(1)<2.2 GeV, 2.5<p(1)<2.7 GeV)</p>
- Plot off resonance subtracted Data, B Generic MC
- ΔM_{τ} is τ mass diffusing P_{vv}
- $\Delta M_{T, \Delta E=0}$ is beam constrained T mass diff
- Good Match

Spectra from Primary Lepton Sideband regions (,e) mode

SideBand Data/MC Check 2

Use Primary Lepton Sidebands (2.0<p(1)<2.2 GeV, 2.5<p(l)<2.7 GeV)

Plot off resonance Data, Continuum Generic MC

In (e,e) mode data exceeds MC: 2 y bgd Scale MC in signal region by this ratio Small error because we do onoff data substraction

Spectra from Primary Lepton Sideband regions (,e) mode

Results

- Subtract Off Resonance Data from On Resonance Data, after cuts
- Compare to N(BB), N(Cont) scaled according to primary sideband estimation
- The rest would be signal

(l,l')	(,e)	(,)	(e,e)	(e,)
N(on)	19	10	28	6
N(off)	2	3	7	0
N(obs)	15.0±5.2	4.0±4.7	14.0±7.5	6.0±2.4
<nbb></nbb>	23.7±2.7	9.0±1.4	11.6±1.4	5.1±0.8
<ncont></ncont>	1.8±0.6	0.4±0.2	3.1±1.0	0.5±0.3

Results 2

- Dominant Systematics:
 - Lepton ID (3.5% for each lepton)
 - \bullet P_{vv} uncertainties (5.4%)
 - Allow MC Scaling to vary by 1σ in least favorable direction for UL

(۱,۱′)	(,e)	(,)	(e,e)	(e,)
BR 90% UL (10 ⁻⁴)	0.55	0.87	1.64	1.46

Conclusions

- Combining Modes gives:
 - ⊗ B(B→ τ) < 3.8×10⁻⁵ @ 90%CL

Submitted to PRL

Limits are a factor of 22(5) better than previous lowest by CLEO

Results given are for unpolarized T For V-A \in -> \in +11% For V+A \in -> \in -8%