Measurement of $\mathscr{B}(\Upsilon(nS) \rightarrow \mu^+\mu^-)$ at CLEO

hep-ex/0409027 - submitted to PRL

István Dankó Rensselaer Polytechnic Institute

CLEO

representing the CLEO Collaboration

CESR

1st Meeting of the APS topical Group on Hadronic Physics Fermilab, Oct 24-26, 2004

Motivation

- Heavy bb-resonances
 - test Lattice QCD and other nonperturbative model predictions
 - establish the accuracy of these calculations.
- Leptonic (Γ_{ee}) and total decay widths (Γ) of Y(nS) are not well established.
- ✓ Γ_{ee} : from integrated resonant hadron cross section
- \checkmark Γ : too narrow to measure directly

 $\Gamma = \Gamma_{\ell\ell} \ / \ B_{\ell\ell} = \Gamma_{ee} \ / \ B_{\mu\mu}$

 \Rightarrow B_{µµ} is crucial to get Γ !

3	Res.	Γ_{ee} (keV)	Β _{μμ} (%)	Γ (keV)
μμ	Y(1S)	1.32±0.05	2.48±0.06	52.5±1.8
	Y(2S)	0.520±0.032	1.31±0.21	44±7
PDG '04	Y(3S)	0.48±0.05	1.81±0.17	26.3± 3.5

Motivation (continue)

h

 \succ B_{µµ} measures the relative strength of Y → γ^{*} → l⁺l⁻ to Y→ ggg/γgg.

3g

- Also important to determine transition rates among the bb states since these are often measured in exclusive modes: $Y(nS) \rightarrow \pi \pi / \gamma \gamma Y(mS) (\rightarrow e^+e^-/\mu^+\mu^-).$
- Verify lepton universality by comparing the decay rate to τ⁺τ⁻

 \rightarrow new physics*?!

$$\mathbf{Y}(nS) \to \gamma_s \phi^0 (\to \ell^+ \ell^-)$$

*M. A. Sanchez, Mod. Phys. Lett. A 17, 2265 (2003), hep-ph/0401031.

2g

Analysis strategy

Measure the decay rate to $\mu^+\mu^-(\Gamma_{\mu\mu})$ relative to the decay rate to hadrons $(\Gamma_{had} = \Gamma - \Gamma_{ee} - \Gamma_{\mu\mu} - \Gamma_{\tau\tau})$:

$$\widetilde{B}_{\mu\mu} = \frac{\Gamma_{\mu\mu}}{\Gamma_{had}} = \frac{N(\mathbf{Y} \to \mu^+ \mu^-) / \varepsilon_{\mu\mu}}{N(\mathbf{Y} \to hadrons) / \varepsilon_{had}}$$

then $B_{\mu\mu}$ (assuming lepton universality, $\Gamma_{ee} = \Gamma_{\mu\mu} = \Gamma_{\tau\tau}$) is:

$$B_{\mu\mu} = \frac{\Gamma_{\mu\mu}}{\Gamma} = \frac{\Gamma_{\mu\mu}}{\Gamma_{had} \left(1 + 3\Gamma_{\mu\mu} / \Gamma_{had}\right)} = \frac{\widetilde{B}_{\mu\mu}}{1 + 3\widetilde{B}_{\mu\mu}}$$

uncertainty due to luminosity systematics cancels out
 large background from non-resonant processes (continuum)

$$e^+e^- \rightarrow \mu^+\mu^-$$
 and $e^+e^- \rightarrow q\overline{q}$

continuum subtraction using off-resonance samples:

$$N(\mathbf{Y} \to \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}) = N_{\mu\mu}^{on-res.} - S \cdot N_{\mu\mu}^{off-res}$$

CLEO detector

Data collected with the CLEO III detector at the Cornell Electron-positron Storage Ring (CESR) in 2001-2002.

Data sample

Selection of $\mu^+\mu^-$ events

• Exactly 2 back-to-back tracks with net charge = 0,

 $|\cos \theta| < 0.80$ and $0.7 < p/E_b < 1.15$

- Cosmic ray rejection: require tracks to come from interaction point,
- Bhabha/hadron rejection: using CsI Calorimeter (CC) and MUON info

Number of extra showers in CC < 2
suppress cascade decays
$$Y(nS) \rightarrow Y(mS) \pi^0 \pi^0 / \gamma \gamma$$

 $\mu + \mu -$

Efficiency for:
•
$$Y \rightarrow \mu^+\mu^-$$
: 65%
• $e^+e^- \rightarrow \mu^+\mu^-$: 45%

Cosmic-ray suppression

Preliminary

Background from cascade decays

Selected muon pairs

Data - MC comparison

Selecting Y→hadrons

Event vertex position:

cosmic background

events.

Efficiency for Y decays to hadrons: 96-98%.

Efficiency for $Y(nS) \rightarrow \tau^+ \tau^-$ is ~26% (effective contribution is ~0.4–0.7%)

Continuum subtraction removes essentially all the remaining non-resonant background from two-photon fusion, $q\overline{q}$, $\tau^+\tau^-$.

Interference

- Interference between resonance decay and continuum production of the same final state distorts the resonance shape.
- Interference effect is different for $\mu^+\mu^-$ and hadrons (only qq interferes) hence the measured relative decay rate depends on E_{cm} .
- Convolute the interference corrected BW shape with a Gaussian energy spread and a radiative tail to estimate the effect of interference.

Fractional correction to
$$B_{\mu\mu}$$
:
 1S: -1.6%

 2S: -3.9%
 3S: -1.8%

Statistical and systematic uncertainties

Statistical uncertainties: subtraction of the <u>scaled</u> off-resonance data increases the stat. uncertainty! $\delta N(res) = [\delta N(on)^2 + S^2 \delta N(off)^2 + N(off)^2 \delta S^2]^{1/2}$

	Y(1S)	Y(2S)	Y(3S)
Fractional statistical uncertainty	<1%	1.5%	3.0%

Systematic uncertainties:

efficiency: detector modeling, trigger, MC statistics
N(events): background subtraction (cosmic, cascade, ττ)
Scale factor: 0.5% variation
Interference: variation in parameters and energy

Preliminary

	Y(1S)	Y(2S)	Y(3S)
ε(had)	1.6%	1.3%	1.4%
N(had)	0.2%	0.3%	0.4%
ε(μμ)	1.8%	1.8%	1.8%
Ν(μμ)	0.1%	1.6%	0.9%
Scale(on/off)	0.8%	2.3%	3.1%
Interference	1%	1%	1%
Frac. systematic	2.7%	3.7%	4.1%

$\mathscr{B}(Y(nS) \rightarrow \mu^{+}\mu^{-})$

	Y(1S)	Y(2S)	Y(3S)
N(µµ) 10 ³	344.9 ± 2.5	119.6 ± 1.8	81.2 ± 2.7
ε(μμ)	0.652 ± 0.002	0.652 ± 0.002	0.652 ± 0.002
N(had) 10 ⁶	18.96 ± 0.01	7.84 ± 0.01	4.64 ± 0.01
ε(had)	0.979 ± 0.001	0.965 ± 0.001	0.975 ± 0.001
Β _{μμ} (%)	$2.49 \pm 0.02 \pm 0.07$	$2.03 \pm 0.03 \pm 0.08$	$2.39 \pm 0.07 \pm 0.10$

Y(1S)

PLUTO 79

CNTR 80

Y(3S)

CLEO 84

Summary

- > CLEO has measured $B_{\mu\mu}$ for Y(1S), Y(2S), Y(3S): Preliminary
 - 1S: $(2.49 \pm 0.02 \pm 0.07)\%$ PDG: $(2.48 \pm 0.06)\%$
 - 2S: $(2.03 \pm 0.03 \pm 0.08)\%$
 - 3S: $(2.39 \pm 0.07 \pm 0.10)\%$

 $6: (2.48 \pm 0.06)\%$ $(1.31 \pm 0.21)\%$ $(1.81 \pm 0.17)\%$

- > Br(1S) is consistent with PDG, but Br(2S) and Br(3S) is much larger.
- Total decay width using $\Gamma_{ee}\Gamma_{had}/\Gamma$ from PDG.

 $\Gamma(1S) = (52.8 \pm 1.8) \text{ keV}$ $\Gamma(2S) = (29.0 \pm 1.6) \text{ keV}$ $\Gamma(3S) = (20.3 \pm 2.1) \text{ keV}$

$$\Gamma = \frac{\Gamma_{ee}\Gamma_{had}/\Gamma}{B_{\mu\mu}(1-3B_{\mu\mu})}$$

PDG: (52.5 ± 1.8) keV (44 ± 7) keV (26.3 ± 3.5) keV

Results submitted to PRL (hep-ex/0409027)