Results for exclusive D semileptonic decays from CLEO-c
Overview of an exclusive $B \rightarrow \pi/\rho \ l \ \nu$ analysis
The CLEO detector and data samples

The CLEO detector was developed for B physics at the $Y(4S)$ at the Cornell Electron Storage Ring (CESR):

- **B-field**: 1.5 T
- **Gas (drift chamber)**: He and C_3H_8
- **Tracking**: 93% of 4π, $\delta P/P \approx 0.6\%$ for a 1.0 GeV track
- **Hadron particle ID**: RICH (80% of 4π) and dE/dx
- **E/M crystal calorimeter**: 93% of 4π, $\delta E/E \approx 2\%(4\%)$ for a 1.0 GeV (100 MeV) photon
- **Muon Chambers**: Proportional chambers at 3, 5 and 7 λ_I.

Transitions from CLEO III to CLEO-c:

- **B-field**: 1.5 T \rightarrow 1.0 T
- **Silicon vtx detector** \rightarrow low mass stereo drift chamber

CESR is a symmetric e^+e^- collider operating in the region of the Y resonances. Transition from CESR to CESR-c:

- **12 wigglers were installed**

~16 fb$^{-1}$ at the $Y(4S)$

Over 20 years of data taking at $Y(4S)$

Pilot run starting in the fall of 2003

~56 pb$^{-1}$ at the $\psi(3770)$ in fall-03/winter-04 (now have 280 pb$^{-1}$)

July, 2005

Exclusive Semileptonic D and B decays from CLEO
Semileptonic decays

- Semileptonic decays are a principal process for measuring the CKM matrix elements:
- Strong interaction effects reside in the hadronic current only and are parameterized by form factors (assuming charged lepton mass is zero):
 - for P to P transitions:
 \[H^\mu = f_+(q^2)(p_i + p_f)^\mu \]
 - for P to V transitions three form factors are needed:
 \[H^\mu = \frac{2ie^{\mu\nu\alpha\beta}}{M_D + m_V} e^\nu p_f p_i p_\beta V(q^2) - (M_D + m_V) e^\mu A_1(q^2) + \frac{e^\mu e^\nu}{M + m_V} (p_i + p_f)^\mu A_2(q^2) \]

- The theory must predict the absolute normalization of form factors for the CKM matrix element measurements:
 \[\Gamma(D^0 \rightarrow \pi^- e^+\nu) = \frac{B(D^0 \rightarrow \pi^- e^+\nu)}{\tau(D^0)} = \gamma \left| V_{cd} \right|^2 \Rightarrow \delta V_{cd}^2 = \frac{\delta\Gamma}{2\Gamma} + \frac{\delta\gamma}{2\gamma} \]

- In charm semileptonic decays $|V_{cs}|$ and $|V_{cd}|$ are tightly constrained by the unitarity of the CKM matrix. Therefore measurements of charm semileptonic decay rates and form factors rigorously test the theory (e.g., LQCD and LCSR).

- Testing theoretical predictions for semileptonic form factors is an important task of the CLEO-c program underway at CESR (Ref.: CLNS 01/1742).
The $\psi(3770)$ is about 40 MeV above the DD pair production threshold and decay predominantly to DD pairs ($P_D = -P_{\bar{D}}$).

One of the two D's is reconstructed in a hadronic decay channel. It is called a tag. Two key variables in the tag reconstruction:

- $M_{bc} = \sqrt{E_{\text{beam}}^2 - P_{\text{candidate}}^2}$
- $\Delta E = E_{\text{beam}} - E_{\text{candidate}}$

From the remaining tracks and showers the semileptonic decay is reconstructed.

$U \equiv E_{\text{miss}} - |P_{\text{miss}}|$ is used to separate signal from background, where E_{miss} and P_{miss} are the missing energy and momentum approximating the neutrino E and P. The signal peaks at zero in U.

Account for the background in the signal region of U. Account for systematic uncertainties.
D^0 and D^+ tag yields in 56 pb$^{-1}$ of DATA

<table>
<thead>
<tr>
<th>D^0 Decay Mode</th>
<th>B (%) PDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 \rightarrow K^-\pi^+$</td>
<td>(3.80 ± 0.09)</td>
</tr>
<tr>
<td>$D^0 \rightarrow K^-\pi^+\pi^0$</td>
<td>(13.1 ± 0.9)</td>
</tr>
<tr>
<td>$D^0 \rightarrow K^-\pi^+\pi^-\pi^0$</td>
<td>(7.46 ± 0.31)</td>
</tr>
<tr>
<td>$D^0 \rightarrow K^0\pi^0$</td>
<td>(2.28 ± 0.22)</td>
</tr>
<tr>
<td>$D^0 \rightarrow K^0\pi^+\pi^-$</td>
<td>(5.92 ± 0.35)</td>
</tr>
<tr>
<td>$D^0 \rightarrow K^0\pi^+\pi^-\pi^0$</td>
<td>(10.8 ± 1.3)</td>
</tr>
<tr>
<td>$D^0 \rightarrow K^+K^-$</td>
<td>(0.41 ± 0.01)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D^+ Decay Mode</th>
<th>B (%) PDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^+ \rightarrow K^0\pi^+$</td>
<td>(2.77 ± 0.18)</td>
</tr>
<tr>
<td>$D^+ \rightarrow K^-\pi^+\pi^0$</td>
<td>(9.1 ± 0.6)</td>
</tr>
<tr>
<td>$D^+ \rightarrow K^0\pi^+\pi^0$</td>
<td>(9.7 ± 3.0)</td>
</tr>
<tr>
<td>$D^+ \rightarrow K^+\pi^+\pi^-\pi^0$</td>
<td>(6.4 ± 1.1)</td>
</tr>
<tr>
<td>$D^+ \rightarrow K^+\pi^-\pi^+\pi^0$</td>
<td>(7.0 ± 0.9)</td>
</tr>
<tr>
<td>$D^+ \rightarrow K^+K^-\pi^+$</td>
<td>(0.9 ± 0.1)</td>
</tr>
</tbody>
</table>

Examples of Mbc for tag modes in the data

- $D^0 \rightarrow K^-\pi^+$ ~10K events
- $D^0 \rightarrow K^-\pi^+\pi^0$ ~19K events
- $D^+ \rightarrow K^-\pi^+\pi^0$ ~15K events
- $D^0 \rightarrow K^+\pi^+\pi^0\pi^0$ ~4.5K events
- $D^+ \rightarrow K^-\pi^+\pi^0\pi^0$ ~5.0K events
- $D^+ \rightarrow K^-\pi^+\pi^0\pi^0$ ~3.5K events

Tagging creates a single beam of D mesons with known momentum

\sim30% tagging efficiency
\sim20% tagging efficiency

July, 2005 Exclusive Semileptonic D and B decays from CLEO
Reconstruction of semileptonic decays

- Semileptonic modes listed in the table are reconstructed
- Electron identification (muons are not used):
 - Likelihood function built from E/P, dE/dx and RICH information (~95% efficient above 300 MeV with fake rates below ~0.2%)
 - Bremsstrahlung photons for electrons are recovered
- Hadron identification is based on dE/dx (all momenta) and RICH (above 700 MeV)
- K^*, ρ, and ω have 100, 150 and 20 MeV mass window cuts respectively
- Events with extra tracks are vetoed
- The crossing angle is accounted for and the 4-moment of the signal D is approximated by $(E_{\text{beam}}, -\sqrt{E_{\text{beam}}^2 - m_D^2 \hat{p}_{D_{\text{tag}}}})$
- One entry per U plot per D tag mode is chosen based on $K^*/\rho/\omega$ and/or π^0 masses
- Again, semileptonic decays peak at zero in $U \equiv E_{\text{miss}} - |P_{\text{miss}}|$
- Semileptonic branching fractions are obtained as $B(D^0 \rightarrow \pi^- e^+ \nu) = \frac{N(\pi^- e^+ \nu)}{\varepsilon(\pi^- e^+ \nu)N(D_{\text{tag}}^0)}$ (independent of the luminosity)

Semileptonic modes listed in the table are reconstructed

<table>
<thead>
<tr>
<th>Decay Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $D^0 \rightarrow K^- e^+ \nu$</td>
</tr>
<tr>
<td>2. $D^0 \rightarrow K^- e^+ \nu$</td>
</tr>
<tr>
<td>3. $D^0 \rightarrow K^0 (K^- \pi^0) e^+ \nu$</td>
</tr>
<tr>
<td>4. $D^0 \rightarrow K^0 (K^0 \pi^-) e^+ \nu$</td>
</tr>
<tr>
<td>5. $D^0 \rightarrow \rho^0 e^+ \nu$</td>
</tr>
<tr>
<td>6. $D^+ \rightarrow \pi^0 e^+ \nu$</td>
</tr>
<tr>
<td>7. $D^+ \rightarrow K^0 e^+ \nu$</td>
</tr>
<tr>
<td>8. $D^+ \rightarrow K^{*0} (K^- \pi^+) e^+ \nu$</td>
</tr>
<tr>
<td>9. $D^+ \rightarrow \rho^0 (\pi^+ \pi^-) e^+ \nu$</td>
</tr>
<tr>
<td>10. $D^+ \rightarrow \omega (\pi^+ \pi^- \pi^0) e^+ \nu$</td>
</tr>
</tbody>
</table>

July, 2005

Exclusive Semileptonic D and B decays from CLEO
Background is small and peaks outside the signal region (kinematic separation)

Most background comes from cross-feed among D semileptonic decays

In other experimental configurations the momentum of the parent D meson is unmeasured because of the neutrino, which leads to poorer separation between signal and background

For example, in a CLEO III analysis using Y(4S) data (PRL 94, 011802 (2005)) to reduce background $D^0 \rightarrow \pi^+ e^+ \nu$ is tagged with $\pi_{slow}: D^{*+} \rightarrow D^0 \pi_{slow}$. Fits are made to $\Delta M \equiv M(D^{*+}) - M(D^0)$ in bins of q^2
U distributions for \(P \rightarrow P \) decays in 56 pb\(^{-1}\) of data

Cabibbo favored modes

- \(D^0 \rightarrow K^- e^+ \nu \)
 - \(\sim 1300 \) events

- \(D^0 \rightarrow \pi^- e^+ \nu \)
 - \(\sim 110 \) events

Cabibbo suppressed modes

- \(D^+ \rightarrow K_S^0 e^+ \nu \)
 - \(\sim 550 \) events

- \(D^+ \rightarrow \pi^0 e^+ \nu \)
 - \(\sim 65 \) events
U distributions for $P \to V$ decays in 56 pb$^{-1}$ of data

Cabibbo favored modes

$D^0 \to K^−(K^0\pi^0)e^+\nu$

~ 90 events

$D^0 \to K^* K^0_s\pi^-e^+\nu$

~ 120 events

$D^+ \to K^{*0}(K^-\pi^+)e^+\nu$

~ 420 events

Cabibbo suppressed modes

$D^0 \to \rho^-e^+\nu$

~ 30 events

First Observation

$D^+ \to \rho^0e^+\nu$

~ 30 events

First Observation

$D^+ \to \omega e^+\nu$

8 events
Absolute branching fractions for D semileptonic decays

<table>
<thead>
<tr>
<th>Mode</th>
<th>B (%)</th>
<th>B (%) (PDG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 \to \pi^- e^+ \nu_e$</td>
<td>$0.26 \pm 0.03 \pm 0.01$</td>
<td>0.36 ± 0.06</td>
</tr>
<tr>
<td>$D^0 \to K^- e^+ \nu_e$</td>
<td>$3.44 \pm 0.10 \pm 0.10$</td>
<td>3.58 ± 0.18</td>
</tr>
<tr>
<td>$D^0 \to K^-(K^-\pi^0)e^+ \nu_e$</td>
<td>$2.11 \pm 0.23 \pm 0.10$</td>
<td>2.15 ± 0.35</td>
</tr>
<tr>
<td>$D^0 \to K^-(K^0\pi^-)e^+ \nu_e$</td>
<td>$2.19 \pm 0.20 \pm 0.11$</td>
<td>2.15 ± 0.35</td>
</tr>
<tr>
<td>$D^0 \to \rho^- e^+ \nu_e$</td>
<td>$0.19 \pm 0.04 \pm 0.01$ —</td>
<td></td>
</tr>
<tr>
<td>$D^+ \to \pi^0 e^+ \nu_e$</td>
<td>$0.44 \pm 0.06 \pm 0.03$</td>
<td>0.31 ± 0.15</td>
</tr>
<tr>
<td>$D^+ \to K^0 e^+ \nu_e$</td>
<td>$8.71 \pm 0.38 \pm 0.37$</td>
<td>6.7 ± 0.9</td>
</tr>
<tr>
<td>$D^+ \to \bar{K}^0 e^+ \nu_e$</td>
<td>$5.56 \pm 0.27 \pm 0.23$</td>
<td>5.5 ± 0.7</td>
</tr>
<tr>
<td>$D^+ \to \rho^0 e^+ \nu_e$</td>
<td>$0.21 \pm 0.04 \pm 0.01$</td>
<td>0.25 ± 0.10</td>
</tr>
<tr>
<td>$D^+ \to \omega e^+ \nu_e$</td>
<td>$0.16^{+0.07}_{-0.06} \pm 0.01$ —</td>
<td></td>
</tr>
</tbody>
</table>

- **BF** for $D^0 \to \pi^- e^+ \nu$ ($D^+ \to \bar{K}^0 e^+ \nu$) is measured to be somewhat lower (higher) than the PDG value.

- $B(D^0 \to \pi^- e^+ \nu) / B(D^0 \to K^- e^+ \nu) = (7.6\pm0.8 \pm 0.2) \times 10^{-2}$ compares favorably with the CLEO III result of $(8.2\pm0.6\pm0.5) \times 10^{-2}$ (CLEO, PRL 94, 011802 (2005)). The PDG-04 value for this ratio is 0.101\pm0.017.

- The following two modes $D^0 \to \rho^- e^+ \nu$ and $D^+ \to \omega e^+ \nu$ are observed for the first time.

- Most systematic uncertainties are measured in data and will be reduced with a larger data sample.

References:
- hep-ex/0506052 and hep-ex/0506053
 Both submitted to PRL
The widths of the isospin conjugate exclusive semileptonic decays are related due to the isospin invariance of the hadronic current. We find:

\[\Gamma(D^0 \rightarrow K^- e^+ \nu) / \Gamma(D^+ \rightarrow K^0 e^+ \nu) = 1.00 \pm 0.05 \pm 0.04 \]
\[\Gamma(D^0 \rightarrow \pi^- e^+ \nu) / [2 \cdot \Gamma(D^+ \rightarrow \pi^0 e^+ \nu)] = 0.75^{+0.14}_{-0.11} \pm 0.04 \]
\[\Gamma(D^0 \rightarrow K^{*-} e^+ \nu) / \Gamma(D^+ \rightarrow \bar{K}^{*0} e^+ \nu) = 0.98 \pm 0.08 \pm 0.04 \]

Isospin averaged semileptonic decay widths:

<table>
<thead>
<tr>
<th>Decay Mode</th>
<th>$\Gamma (10^{-2} \cdot \text{ps}^{-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D \rightarrow K e^+ \nu_e$</td>
<td>8.38 ± 0.20 ± 0.23</td>
</tr>
<tr>
<td>$D^0 \rightarrow \pi^- e^+ \nu_e$</td>
<td>0.68 ± 0.05 ± 0.02</td>
</tr>
<tr>
<td>$D \rightarrow K^+ e^+ \nu_e$</td>
<td>5.32 ± 0.21 ± 0.20</td>
</tr>
<tr>
<td>$D^0 \rightarrow \rho^- e^+ \nu_e$</td>
<td>0.43 ± 0.06 ± 0.02</td>
</tr>
</tbody>
</table>

Summing up all exclusive semileptonic branching fractions measured in this analysis we find:

\[\sum B(D^0_{\text{excl semil}}) = (6.1 \pm 0.2 \pm 0.2)\% \quad \text{and} \quad \sum B(D^+_{\text{excl semil}}) = (15.1 \pm 0.5 \pm 0.5)\% \]

These are consistent with the CLEO-c inclusive semileptonic branching fractions (Ref.: CLEO-CONF 05-3, LP2005-429):

\[B(D^0_{\text{incl semil}}) = (6.5 \pm 0.2 \pm 0.2)\% \quad \text{and} \quad B(D^+_{\text{incl semil}}) = (16.2 \pm 0.2 \pm 0.4)\% \]

which excludes the possibility of additional D semileptonic modes with large branching fractions.
CLEO is finishing studies of $B \to X_\mu l \nu$ with the complete CLEO II, II.V and III data sample of 15.4 million BB events. Two analyses are ongoing:

- Weak annihilation in $B \to X_\mu l \nu$ (preliminary results are given in the talk by I.Shipsey in “Heavy Flavors” later today)
- An update for exclusive $B \to \pi/\rho l \nu$ and $|V_{ub}|$

The technique described in Phys.Rev. D 68 072003 (2003) is used for the latter analysis:

- Neutrino reconstruction: $(E_\nu, P_\nu) = (|P_{\text{miss}}|, P_{\text{miss}})$
- Rates are measured in q^2 bins (to minimize the uncertainty from form factors on the branching fractions)
- Simultaneous binned ML fit to all modes (to account for cross-feed among modes) using isospin or constituent quark model constraints for the branching fractions (results from 2003):

$$B(B^0 \to \pi^- l^+ \nu) = (1.33 \pm 0.18 \pm 0.11 \pm 0.01 \pm 0.07) \times 10^{-4};$$
$$B(B^0 \to \rho^- l^+ \nu) = (2.17 \pm 0.34 \pm 0.47 \pm 0.41 \pm 0.01) \times 10^{-4}$$

- $|V_{ub}|$ is extracted using LCSR for $q^2 \in [0;16]$ GeV2 and LQCD for $q^2 \in [16; q_{\text{max}}^2]$ GeV2.
In the current $B \to \pi/\rho \ell \nu$ analysis, significant improvements in the systematic uncertainty related to the $B \to \rho \ell \nu$ modeling are expected:

- The lepton momentum cut is lowered to 1.0 GeV from 1.5 GeV
- The region $\cos(\theta_l) < 0.0$ is included in the fit

Changes to the q^2 binning are being considered

Recent unquenced lattice calculation for the $B \to \pi \ell \nu$ form factor is used (Shigemitsu, et al., hep-lat/0408019)

Final CLEO results on $|V_{ub}|$ using 15.4 million BB pairs are forthcoming.
The analysis of absolute D semileptonic branching fractions from the first $\sim 56 \text{ pb}^{-1}$ data sample collected at the $\psi(3770)$ by CLEO-c is completed. All measurements are most precise to date.

CLEO is finishing studies of $B \to X_u \ell \nu$ with the full $\Upsilon(4S)$ data set of 15.4 million BB events.

Analyses of semileptonic form factors with 280 pb$^{-1}$ of new CLEO-c data are ongoing.

CLEO-c is going to collect a much larger data sample at the $\psi(3770)$ as well as data above the $D_s D_s$ threshold. This data sample will play an important role in particle physics as

- validation and calibration data for LQCD and other theories and models
- input data to the B factories and other experiments increasing their potential in the search for new physics
Extra slides
The ~56 pb\(^{-1}\) data sample collected in fall-2003/winter-2004 by the CLEO-c detector already gives measurements of absolute branching fractions for all modes considered today with uncertainties smaller than the uncertainties in PDG-2004.

CLEO-c is going to collect a much larger data sample at the \(\psi(3770)\) and data at slightly higher energies for studies of \(D_s\) mesons.

An important aspect of the CLEO-c program is testing the LQCD predictions as well as predictions of models or other theories for semileptonic form factors:

- CLEO-c will measure form factors at a percent level in \(P \rightarrow P\) transitions and at a few percent level in \(P \rightarrow V\) transitions.
- Theory (e.g., LQCD) predictions for the absolute normalization of form factors (e.g., \(f_+(0)\)) can be tested if one assumes the unitarity of the CKM matrix (\(V_{cs}\) and \(V_{cd}\) become known to 0.1% and 1.0% respectively)
- Theory can be tested further without uncertainties associated with the CKM couplings or assumptions of the CKM unitarity using the following ratio of decay rates \(\Gamma(D^+ \rightarrow \pi^- \ell^+ \nu) / \Gamma(D^+ \rightarrow \ell^+ \nu)\)

Using future CLEO-c measurements of branching fractions for \(D \rightarrow \pi \ell\nu\) and \(D \rightarrow K \ell\nu\) (1.2% and 1.5% uncerts) and the world averages for \(D\) meson lifetimes, and assuming theory errors on \(\gamma_s\) and \(\gamma_d\) of 3%, the following uncertainties for \(V_{cs}\) and \(V_{cd}\) from \(D\) semileptonic decays at CLEO-c sample are possible:

\[\frac{\delta V_{cs}}{V_{cs}} \approx 1.6\% \quad \text{and} \quad \frac{\delta V_{cd}}{V_{cd}} \approx 1.7\%\]

First unquenched LQCD calculation for \(D \rightarrow \pi/Ke\nu\) (PRL 94, 011601 (2005))