$D_{(s)}$ Hadronic Decays From CLEO-c

$e^+ e^- \rightarrow D_s^* D_s \rightarrow D_s^+ D_s^- \gamma$

Peter Onyisi

Cornell University
CLEO Collaboration

Charm 2006, June 5-7, 2006
Outline

- Scope of hadronic decay analyses (and this talk)
- Analysis techniques
- Results:
 - $D^0/D^+/D_s$ absolute branching fractions
 - $D^0/D^+ \rightarrow (m)\pi^\pm (n)\pi^0$
 - $D^+ \rightarrow K_{S,L}\pi^+$
 - $D^0/D^+/D_s \rightarrow (\phi, \eta, \eta')X$
The hadronic decays of charmed mesons are a very active field of study at CLEO-c — multiple talks are covering our results:

- The Quantum Correlation Analysis (D. Asner)
- Dalitz analyses (M. Dubrovin)
- High energy scan [3.97–4.26 GeV] (R. Poling)

This talk will cover branching fraction results.

Physics from branching fractions:

- Important as engineering numbers:
 - “Reference” modes, e.g. $D^0 \rightarrow K^-\pi^+$ and $D^+ \rightarrow K^-\pi^+\pi^+$, normalize many D and B decays
 - Inclusive rates help disentangle charm content

- Relative rates of decays measure various decay amplitudes, probe final state interactions
Detector slightly modified from Υ physics configuration: silicon vertex detector replaced with (all stereo) drift chamber

Solenoid magnetic field changed from 1.5T to 1.0T to compensate for lower-momentum tracks

DAQ, trigger, software, etc. from CLEO-III with only minor changes

Particle ID (from dE/dx, Čerenkov) better due to lower p tracks

Muon system now only useful for high momentum (e.g. $J/\psi \rightarrow \mu^+\mu^-$)
Datasets

CLEO-c has accumulated:

- 281 pb\(^{-1}\) at \(\psi(3770)\)
 - \(D\bar{D}\) at 6 nb
 - The \(D^0/D^+\) absolute BFs use 56 pb\(^{-1}\) only, are being updated
- \(\approx 200\) pb\(^{-1}\) near 4.17 GeV
 - \(D_s^*D_s\) at 1 nb, \(DD + D^*D + D^*D^*\) at 7 nb
 - Only \(\approx 75\) pb\(^{-1}\) used for results here

Operating points

\(E_{cm}\) \(\rightarrow\) \(D\bar{D}\) \(\rightarrow\) \(D_s^*D_s\)
Analysis techniques

These analyses use “single tag” and “double tag” techniques:

▶ **Single tag** events reconstruct the signal in events without regard for the rest of the event

▶ **Double tag** events reconstruct the signal opposite a well-understood (flavor tagging) decay

Single tags:
- ✓ Full statistics available
- × Branching ratios only (ratios of ST yields)
- × D^0 BFs affected by quantum correlations, especially CP eigenstates

Double tags:
- ✓ Very clean
- ✓ Branching fractions from ratios of DT and ST yields
- ✓ Can infer K_L^0
- ✓ Flavor tags minimize quantum correlations
- × Tag efficiency $\sim O(10\%)$
Tagging at different energies

- At $\psi(3770)$, only open charm channels are $D^0\bar{D}^0$, D^+D^-
 - Cut on $\Delta E \equiv E_{\text{cand}} - E_{\text{beam}}$, fit in $m_{BC} \equiv \sqrt{E_{\text{beam}}^2 - |\vec{p}_{\text{cand}}|^2}$
- At $E_{cm} = 4.17$ GeV, multiple open channels. For D_s we use $D_s^*D_s$
 - We use m_{BC} as a proxy for momentum to choose the $D_s^*D_s$ two-body decay
 - Fits are in invariant mass
- Charged K, π distinguished using dE/dx (all momenta) and Čerenkov (for high momentum)
- Find π^0's by combining pairs of isolated showers in the CsI calorimeter, requiring 3σ consistency with π^0 mass ($\sigma \sim 6$ MeV)
- Find K_S's by combining pairs of tracks that lie within a mass window
Kinematic Separation at $E_{cm} = 4.17$ GeV

m_{inv} vs. m_{BC} for $K^- K^+ \pi^+$ candidates

$\sqrt{E_{beam}^2 - \vec{p}_{cand}^2}$
Absolute Hadronic Branching Fractions: Overview

- D^0/D^+ reference decay modes are $D^0 \rightarrow K^-\pi^+$ and $D^+ \rightarrow K^-\pi^+\pi^+$
- The classic D_s reference decay has been the exclusive mode $D_s^+ \rightarrow \phi\pi^+ \rightarrow K^-K^+\pi^+$
- This causes problems since ϕ signal is ambiguous given the precision we will soon achieve. All results here are inclusive branching fractions only.

<table>
<thead>
<tr>
<th>Decay</th>
<th>PDG 2004 fit</th>
<th>Rel uncert</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 \rightarrow K^-\pi^+$</td>
<td>3.80%</td>
<td>2.4%</td>
</tr>
<tr>
<td>$D^0 \rightarrow K^-\pi^+\pi^0$</td>
<td>13.0%</td>
<td>6.2%</td>
</tr>
<tr>
<td>$D^0 \rightarrow K^-\pi^+\pi^-\pi^+$</td>
<td>7.46%</td>
<td>4.2%</td>
</tr>
<tr>
<td>$D^+ \rightarrow K^-\pi^+\pi^+$</td>
<td>9.2%</td>
<td>6.5%</td>
</tr>
<tr>
<td>$D^+ \rightarrow K^-\pi^+\pi^+\pi^0$</td>
<td>6.5%</td>
<td>17%</td>
</tr>
<tr>
<td>$D^+ \rightarrow K_S\pi^+$</td>
<td>1.41%</td>
<td>6.7%</td>
</tr>
<tr>
<td>$D^+ \rightarrow K_S\pi^+\pi^0$</td>
<td>4.85%</td>
<td>31%</td>
</tr>
<tr>
<td>$D^+ \rightarrow K_S\pi^+\pi^+\pi^-$</td>
<td>3.55%</td>
<td>14%</td>
</tr>
<tr>
<td>$D^+ \rightarrow K^-K^+\pi^+$</td>
<td>0.89%</td>
<td>9.0%</td>
</tr>
<tr>
<td>$D_s^+ \rightarrow K_SK^+$</td>
<td>1.8%</td>
<td>31%</td>
</tr>
<tr>
<td>$D_s^+ \rightarrow K^-K^+\pi^+$</td>
<td>4.3%</td>
<td>28%</td>
</tr>
<tr>
<td>$D_s^+ \rightarrow K^-K^+\pi^+\pi^0$</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$D_s^+ \rightarrow \pi^+\pi^+\pi^-$</td>
<td>1.00%</td>
<td>28%</td>
</tr>
</tbody>
</table>

BaBar has a 2005 $\phi\pi^+$ measurement, 34% higher than the PDG, with 13% errors.
Absolute Hadronic Branching Fractions: General Method

(Follows pioneering analysis at $\psi(3770)$ by Mark III...)

▸ Exploit low-energy production processes:
 ▸ At 3.77 GeV, open charm only produced as $D^0\overline{D}^0$ and $D^+D^−$
 ▸ At 4.17 GeV, D_s produced almost entirely as $D_{s}^*D_{s}$

▸ Single tags pin down ratios between modes, double tags establish absolute BF scale
 ▸ Use a $\chi^2 (D^0/D^+)$ or maximum likelihood (D_s) fit to the observed yields to extract maximum information

▸ For D^0/D^+, double tags reconstruct entire event. For D_s, we only reconstruct the $D_{s}^+D_{s}^−$ (the γ or π^0 from the $D_{s}^* \rightarrow D_s$ transition is ignored)
D^0/D^+ Yield Extraction

DATA: Single tags

- $D^0 \to K^- \pi^+$
- $D^- \to K^- \pi^+ \pi^+$
- $D^0 \to K_S^0 \pi^+$
- $D^0 \to K^- \pi^+ \pi^0$
- $D^- \to K^- \pi^+ \pi^0$
- $D^0 \to K_S^0 \pi^+ \pi^0$
- $D^0 \to K^- \pi^+ \pi^+$
- $D^- \to K_S^0 \pi^+ \pi^-$
- $D^0 \to K^+ \pi^+$

DATA: Double tag projections

- Fit signal with a priori function of physical parameters (detector momentum resolution, beam energy spread, $\psi(3770)$ lineshape, ISR spectrum)
- Smooth backgrounds fit as combinatoric phase space ("ARGUS function")
- Peaking backgrounds estimated from known BFs and subtracted
- In double tags, fit 2D plane of $M_{BC}(1)$ vs. $M_{BC}(2)$

DT signal shape

Detector resolution

ISR & beam energy
Systematic Uncertainties

(56 pb$^{-1}$ analysis)

<table>
<thead>
<tr>
<th>Source</th>
<th>Fractional uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking/K_S/π^0</td>
<td>0.7/3.0/2.0 per particle</td>
</tr>
<tr>
<td>Particle ID</td>
<td>0.3 per π, 1.3 per K</td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>< 0.2</td>
</tr>
<tr>
<td>ΔE cut</td>
<td>1.0–2.5 per D</td>
</tr>
<tr>
<td>FSR modeling</td>
<td>0.5 per single tag</td>
</tr>
<tr>
<td>ψ'' width</td>
<td>0.6</td>
</tr>
<tr>
<td>Resonant substructure</td>
<td>0.4–1.5</td>
</tr>
<tr>
<td>Event environment</td>
<td>0.0–1.3</td>
</tr>
<tr>
<td>Yield fit functions</td>
<td>0.5</td>
</tr>
<tr>
<td>Misc. event selection</td>
<td>0.3</td>
</tr>
<tr>
<td>Double DCSD interference</td>
<td>0.8 in neutral double tags</td>
</tr>
</tbody>
</table>

$D^0 \to K^- \pi^+$ uncert 2.3%, $D^+ \to K^- \pi^+ \pi^+$ uncert 2.8%

For these, largest contributors are kaon PID and ΔE cut
D^0 / D^+ Results

Branching fractions ...

<table>
<thead>
<tr>
<th>Mode</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{B}(D^0 \to K^- \pi^+)$</td>
<td>$(3.91 \pm 0.08 \pm 0.09)%$</td>
</tr>
<tr>
<td>$\mathcal{B}(D^0 \to K^- \pi^+ \pi^0)$</td>
<td>$(14.9 \pm 0.3 \pm 0.5)%$</td>
</tr>
<tr>
<td>$\mathcal{B}(D^0 \to K^- \pi^+ \pi^+ \pi^-)$</td>
<td>$(8.3 \pm 0.2 \pm 0.3)%$</td>
</tr>
<tr>
<td>$\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)$</td>
<td>$(9.5 \pm 0.2 \pm 0.3)%$</td>
</tr>
<tr>
<td>$\mathcal{B}(D^+ \to K^- \pi^+ \pi^+ \pi^0)$</td>
<td>$(6.0 \pm 0.2 \pm 0.2)%$</td>
</tr>
<tr>
<td>$\mathcal{B}(D^+ \to K_S \pi^+)$</td>
<td>$(1.55 \pm 0.05 \pm 0.06)%$</td>
</tr>
<tr>
<td>$\mathcal{B}(D^+ \to K_S \pi^+ \pi^0)$</td>
<td>$(7.2 \pm 0.2 \pm 0.4)%$</td>
</tr>
<tr>
<td>$\mathcal{B}(D^+ \to K_S \pi^+ \pi^+ \pi^-)$</td>
<td>$(3.2 \pm 0.1 \pm 0.2)%$</td>
</tr>
<tr>
<td>$\mathcal{B}(D^+ \to K^+ K^- \pi^+)$</td>
<td>$(0.97 \pm 0.04 \pm 0.04)%$</td>
</tr>
</tbody>
</table>

Cross sections from 55.8 pb^{-1} (PRL 95 121801)

<table>
<thead>
<tr>
<th>$\sigma_{D^+ D^-}$ (nb)</th>
<th>$\sigma_{D^0 \bar{D}^0}$ (nb)</th>
<th>$\sigma_{D\bar{D}}$ (nb)</th>
<th>$\sigma_{D^+ D^-} / \sigma_{D^0 \bar{D}^0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2.79 \pm 0.07^{+0.10}_{-0.04}$</td>
<td>$3.60 \pm 0.07^{+0.07}_{-0.05}$</td>
<td>$6.39 \pm 0.10^{+0.17}_{-0.08}$</td>
<td>$0.776 \pm 0.024^{+0.014}_{-0.006}$</td>
</tr>
</tbody>
</table>
D^0 / D^+ Result Comparison

\[\frac{\mathcal{B}(\text{CLEO-c})}{\mathcal{B}(\text{PDG})} \]

\[\frac{\text{Br. Ratio(CLEO-c)}}{\text{Br. Ratio(PDG)}} \]

$\mathcal{B}(D^0 \rightarrow K^-\pi^+)$
previous absolute measurements and PDG fit

$\mathcal{B}(D^+ \rightarrow K^-\pi^+\pi^+)$
previous absolute measurements and PDG fit
D_s Data Yields

Single Tags

$K_S K^+$ \(788 \pm 34\)

$K^- K^+ \pi^+$ \(3344 \pm 77\)

$K^- K^+ \pi^+ \pi^0$ \(709 \pm 54\)

$\pi^+ \pi^+ \pi^-$ \(539 \pm 41\)

Double Tags

All double tags

136 signal
28 sideband

Peter Onyisi
CLEO-c Charm Hadronic Decays
Charm 2006 15 / 37
D_s Systematic Uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Fractional uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking/K_S/π^0</td>
<td>0.35/1.1/5.0 per particle</td>
</tr>
<tr>
<td>Particle ID</td>
<td>0.3–1.4 correlated by decay</td>
</tr>
<tr>
<td>Resonant substructure</td>
<td>0–6.0 correlated by decay</td>
</tr>
<tr>
<td>Fit procedure</td>
<td>3.5 in fit result</td>
</tr>
<tr>
<td>Event environment</td>
<td>3.5 in $KK\pi\pi^0$</td>
</tr>
<tr>
<td>Initial state radiation correction</td>
<td>0–5 per single tag</td>
</tr>
<tr>
<td>$\mathcal{B}(D_s^{*+} \rightarrow \pi^0 D_s^+)$</td>
<td>0.7 in $KK\pi\pi^0, \pi\pi\pi$</td>
</tr>
</tbody>
</table>
D_s Results

Preliminary

<table>
<thead>
<tr>
<th>Mode</th>
<th>CLEO-c (%)</th>
<th>PDG 2004 fit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{B}(K_S K^+)$</td>
<td>$1.28^{+0.13}_{-0.12} \pm 0.07$</td>
<td>1.8 ± 0.55</td>
</tr>
<tr>
<td>$\mathcal{B}(K^- K^+ \pi^+)$</td>
<td>$4.54^{+0.44}_{-0.42} \pm 0.25$</td>
<td>4.3 ± 1.2</td>
</tr>
<tr>
<td>$\mathcal{B}(K^- K^+ \pi^+ \pi^0)$</td>
<td>$4.83^{+0.49}_{-0.47} \pm 0.46$</td>
<td>—</td>
</tr>
<tr>
<td>$\mathcal{B}(\pi^+ \pi^+ \pi^-)$</td>
<td>$1.02^{+0.11}_{-0.10} \pm 0.05$</td>
<td>1.00 ± 0.28</td>
</tr>
</tbody>
</table>

Diagrams:

- **Left Diagram:**
 - Branching Fraction (%)
 - Modes: $K_S K^+$, $K^+ K^- \pi^+$, $K^+ K^- \pi^+ \pi^0$, $\pi^+ \pi^+ \pi^-$
 - Axes: Branching Fraction (%), PDG 2004 fit, CLEO Preliminary

- **Right Diagram:**
 - BF/PDG 2004 fit
 - Modes: $K_S K^+$, $K^+ K^- \pi^+$, $\pi^+ \pi^+ \pi^-$
 - Axes: BF/PDG 2004 fit, PDG 2004 fit, CLEO Preliminary
Absolute Branching Fractions Summary and Outlook

- D^0/D^+:
 - Branching fractions from 56 pb$^{-1}$ have precision comparable to world averages
 - Updating to 281 pb$^{-1}$: we will be systematics-limited
 - Aiming for < 1.5% uncertainty on reference modes

- D_s:
 - Preliminary absolute branching fractions for four D_s decay modes from 76 pb$^{-1}$ of data
 - Precision about 11% for all-charged modes
 - Inclusive $K^-K^+\pi^+\pi^0$ is a first measurement
 - The measured BFs are consistent with the PDG 2004 fit
 - We are actively working on adding more modes (especially decays with η, η')
 - We are aiming for < 4% uncertainties with full CLEO-c dataset
 - Have more than 120 pb$^{-1}$ additional data on tape
Motivations:

- Cabibbo-suppressed BF's badly known, in particular for modes with \(\pi^0 \)'s
- Isospin analysis from \(D \rightarrow \pi\pi \) probes final state interactions
- Find resonant contributions and tune MC

- Single tag analysis provides full reach for these low rate modes
- Branching ratios measured relative to \(D^0 \rightarrow K^-\pi^+ \) and \(D^+ \rightarrow K^-\pi^+\pi^+ \)
$D^0 / D^+ \rightarrow (m)\pi^\pm (n)\pi^0$

Shaded histogram is normalized sideband
Signals seen in all channels except $D^0 \rightarrow \pi^0 \pi^0 \pi^0$
$D^0 / D^+ \rightarrow (m)\pi^\pm (n)\pi^0$

<table>
<thead>
<tr>
<th>Mode</th>
<th>$\mathcal{B} \left(10^{-3}\right)$</th>
<th>PDG $\left(10^{-3}\right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^+ \pi^-$</td>
<td>$1.39 \pm 0.04 \pm 0.04 \pm 0.03 \pm 0.01$</td>
<td>1.38 ± 0.05</td>
</tr>
<tr>
<td>$\pi^0 \pi^0$</td>
<td>$0.79 \pm 0.05 \pm 0.06 \pm 0.01 \pm 0.01$</td>
<td>0.84 ± 0.22</td>
</tr>
<tr>
<td>$\pi^+ \pi^- \pi^0$</td>
<td>$13.2 \pm 0.2 \pm 0.5 \pm 0.2 \pm 0.1$</td>
<td>11 ± 4</td>
</tr>
<tr>
<td>$\pi^+ \pi^+ \pi^- \pi^-$</td>
<td>$7.3 \pm 0.1 \pm 0.3 \pm 0.1 \pm 0.1$</td>
<td>7.3 ± 0.5</td>
</tr>
<tr>
<td>$\pi^+ \pi^- \pi^0 \pi^0$</td>
<td>$9.9 \pm 0.6 \pm 0.7 \pm 0.2 \pm 0.1$</td>
<td></td>
</tr>
<tr>
<td>$\pi^+ \pi^+ \pi^- \pi^- \pi^0$</td>
<td>$4.1 \pm 0.5 \pm 0.2 \pm 0.1 \pm 0.0$</td>
<td></td>
</tr>
<tr>
<td>$\omega \pi^+ \pi^-$</td>
<td>$1.7 \pm 0.5 \pm 0.2 \pm 0.0 \pm 0.0$</td>
<td></td>
</tr>
<tr>
<td>$\eta \pi^0$</td>
<td>$0.62 \pm 0.14 \pm 0.05 \pm 0.01 \pm 0.01$</td>
<td></td>
</tr>
<tr>
<td>$\pi^0 \omega \pi^0$</td>
<td>$< 0.35 \text{ (90% CL)}$</td>
<td></td>
</tr>
<tr>
<td>$\omega \pi^0$</td>
<td>$< 0.26 \text{ (90% CL)}$</td>
<td></td>
</tr>
<tr>
<td>$\eta \pi^+ \pi^-$</td>
<td>$< 1.9 \text{ (90% CL)}$</td>
<td></td>
</tr>
<tr>
<td>$\pi^+ \pi^0$</td>
<td>$1.25 \pm 0.06 \pm 0.07 \pm 0.04$</td>
<td>1.33 ± 0.22</td>
</tr>
<tr>
<td>$\pi^+ \pi^+ \pi^-$</td>
<td>$3.35 \pm 0.10 \pm 0.16 \pm 0.12$</td>
<td>3.1 ± 0.4</td>
</tr>
<tr>
<td>$\pi^+ \pi^0 \pi^0$</td>
<td>$4.8 \pm 0.3 \pm 0.3 \pm 0.2$</td>
<td></td>
</tr>
<tr>
<td>$\pi^+ \pi^+ \pi^- \pi^0$</td>
<td>$11.6 \pm 0.4 \pm 0.6 \pm 0.4$</td>
<td></td>
</tr>
<tr>
<td>$\pi^+ \pi^+ \pi^+ \pi^- \pi^-$</td>
<td>$1.60 \pm 0.18 \pm 0.16 \pm 0.06$</td>
<td>1.73 ± 0.23</td>
</tr>
<tr>
<td>$\eta \pi^+$</td>
<td>$3.61 \pm 0.25 \pm 0.23 \pm 0.12$</td>
<td>3.0 ± 0.6</td>
</tr>
<tr>
<td>$\omega \pi^+$</td>
<td>$< 0.34 \text{ (90% CL)}$</td>
<td></td>
</tr>
</tbody>
</table>

For $\pi\pi$ decays, obtain amplitude ratios for $A_2 \left(\Delta I = 3/2\right)$ and $A_0 \left(\Delta I = 1/2\right)$:

$$\left| \frac{A_2}{A_0} \right| = 0.420 \pm 0.014 \pm 0.016$$

$$\arg\left(\frac{A_2}{A_0}\right) = (86.4 \pm 2.8 \pm 3.3)^\circ$$

(Erros: stat, syst, normalizing mode, [CP correlation])

PRL 96, 081802
$D^+ \rightarrow K_{S,L} \pi^+ \ (281 \text{ pb}^{-1})$

Usually assume $\mathcal{B}(D \rightarrow K_L X) = \mathcal{B}(D \rightarrow K_S X)$ — but this is not strictly true...

Can produce both Cabibbo-allowed \bar{K}^0 and doubly-Cabibbo-suppressed K^0, and their amplitudes for producing K_L and K_S interfere with opposite signs; thus we expect K_L and K_S decays to have unequal rates (Bigi & Yamamoto, PL B349, 363)

Interference \Rightarrow effect $\propto \tan^2(\theta_C)$

Expect $\mathcal{B}(D^+ \rightarrow K_S \pi^+) \neq \mathcal{B}(D^+ \rightarrow K_L \pi^+)$ by up to $\sim 10\%$
$D^+ \rightarrow K_{S,L}\pi^+$

- Double tag analysis
 - Tag D^+, find extra pion
 - Form missing mass of rest of system: fit for peak at kaon mass $-\text{independent of whether it's } K_L \text{ or } K_S$

- Careful understanding of background shapes required

- Combine with absolute $D^+ \rightarrow K_S\pi^+$ BF to form asymmetry

![Diagram showing D^+ decay modes](image)
$D^+ \rightarrow K_{S,L} \pi^+$

\[
\mathcal{B}(K_S \pi^+) + \mathcal{B}(K_L \pi^+) = (3.055 \pm 0.057 \pm 0.158)\% \\
\frac{\mathcal{B}(K_L \pi^+) - \mathcal{B}(K_S \pi^+)}{\mathcal{B}(K_L \pi^+) + \mathcal{B}(K_S \pi^+)} = -0.01 \pm 0.04 \pm 0.07 \\
\mathcal{B}(D^+ \rightarrow \eta \pi^+) = (0.391 \pm 0.031 \pm 0.033)\%
\]
$D^0/D^+/D_s \rightarrow (\phi, \eta, \eta')X$

- Inclusive D^0/D^+ branching fractions to mesons with large $s\bar{s}$ content extremely poorly known
- D_s final states have more $s\bar{s}$ content, hence expect larger η, η', ϕ branching fractions
- Inclusive rates help disentangle decay chains through open charm (\rightarrow e.g. understand B_s from $\Upsilon(5S)$)
- Uses 281 pb$^{-1}$ for D^0/D^+ and 71 pb$^{-1}$ for D_s
$D^0/D^+/D_s \rightarrow (\phi, \eta, \eta')X$

- Double tag: find $D^0/D^+/D_s$; reconstruct ϕ, η, η' with remaining showers and tracks
 - Use $\phi \rightarrow K^-K^+$, $\eta \rightarrow \gamma\gamma$, $\eta' \rightarrow \pi^+\pi^-\eta \rightarrow \pi^+\pi^-\gamma\gamma$
- Use sidebands in $\Delta E (D^0/D^+)$ and $m_{BC} (D_s)$ of the tag side to get the background spectrum
- Fit invariant mass of ϕ and η, and $\eta'-\eta$ mass difference

![Histograms showing signal and sideband tags for $D_s \rightarrow \eta'X$](image)

Signal tags: 19.1 ± 5.3

Sideband tags: no events
\[D^0 / D^+ / D_s \rightarrow (\phi, \eta, \eta') X \]

Preliminary

<table>
<thead>
<tr>
<th></th>
<th>$\mathcal{B}(\phi X)$ (%)</th>
<th>$\mathcal{B}(\eta X)$ (%)</th>
<th>$\mathcal{B}(\eta' X)$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D^0</td>
<td>1.0 ± 0.1 ± 0.1</td>
<td>9.4 ± 0.4 ± 0.6</td>
<td>2.6 ± 0.2 ± 0.2</td>
</tr>
<tr>
<td>D^+</td>
<td>1.1 ± 0.1 ± 0.2</td>
<td>5.7 ± 0.5 ± 0.5</td>
<td>1.0 ± 0.2 ± 0.1</td>
</tr>
<tr>
<td>D_s</td>
<td>15.1 ± 2.1 ± 1.5</td>
<td>32.0 ± 5.6 ± 4.7</td>
<td>11.9 ± 3.3 ± 1.2</td>
</tr>
</tbody>
</table>

- η signals include feeddown from $\eta'$$ \quad ▶$
- All except $D^0 / D_s \rightarrow \phi X$ are first measurements$$ \quad ▶$
- Known D_s exclusive modes essentially saturate inclusive measurements
Excellent detector, clean events, and large data sample ⇒ branching fractions for open charm decays with precision ≥ world averages

BF measurements help normalize D and B physics, probe strong interaction physics

CLEO-c plans on taking 1.5 fb$^{-1}$ of open charm data over the next two years, aims for absolute BF precision of 1.5% for D^0, D^+ and 4% for D_s
Backup Slides
Single tag yields: \(N_i = N_{DD} B_i \epsilon_i \)

Double tag yields: \(N_{ij} = N_{DD} B_i B_j \epsilon_{ij} \)

\[\Rightarrow \text{Branching fractions:} \ B_j = \frac{N_{ij}}{N_i} \frac{\epsilon_i}{\epsilon_{ij}} \]

- In practice, we fit all the yields simultaneously
 - Maximizes power: limiting statistical uncertainty is \(\sqrt{\text{total double tags in every mode}} \)
 - Bad \(\chi^2 \rightarrow \) something wrong...
- Can correlate systematics
- Obtain cross-section as well
Yield extraction

DATA: $KK\pi$ Single Tags

Fit single tag signals with double Gaussian or Crystal Ball function (parameters fixed from Monte Carlo) plus a linear background

Each charge done separately

In double tags, count events in signal and sideband boxes

Combinatoric background is flat in $m(D_s^+) - m(D_s^-)$, has structure in $m(D_s^+) + m(D_s^-)$
Backgrounds

- Non-peaking backgrounds removed in the yield fit
- Peaking backgrounds are from crossfeed between modes we consider, and contamination from other modes
 - Latter dominated by Cabibbo-suppressed decays in K_S modes, e.g. prompt $D^+ \rightarrow 5\pi$ fakes $D^+ \rightarrow K_S 3\pi$; in some modes up to 3% correction
- Estimate backgrounds to single and double tags with PDG branching fractions and efficiencies from MC, subtract from measured yields

DCSD decay $\bar{D}^0 \rightarrow K^- \pi^+$ faking $D^0 \rightarrow K^- \pi^+$ in 30x MC sample. In data, contributes $\approx 0.15\%$ of observed peak.
Resonant Substructure

- Our Monte Carlo has some reasonable mixture of intermediate resonances
- Our efficiencies depend on the intermediate state
- We reweight the expected efficiencies by comparing data yields with MC expectations
 - Size of correction is largest systematic for $K^- K^+ \pi^+ \pi^0$
- The correction for a given mode affects that mode’s BF only
Systematics studies using ψ'

- **Clean decays** $\psi' \rightarrow J/\psi \pi^+\pi^-$ and $J/\psi \pi^0\pi^0$ used to compare tracking and π^0 efficiencies in MC and data
- **Reconstruct** J/ψ and one pion; compute recoil mass: peaks at pion mass
- **Find fraction** of such events with other pion reconstructed
- **Right:** Plots for $J/\psi \pi^+\pi^-$, $0.15 < \cos \theta_{\pi^-} < 0.55$
 - $\epsilon = (95.89 \pm 0.20)\%$; agrees with MC within statistics

DATA

- 2nd π found

DATA

- 2nd π not found
We use events with the topology $e^+ e^- \rightarrow D_s^{*\pm} D_s^{\mp} \rightarrow D_s^+ D_s^- (\gamma, \pi^0)$.

We do not reconstruct the γ or π^0.

We use the momentum of the D_s candidates to select for events with an intermediate D_s^*. (The quantity $m_{BC} = \sqrt{E_{beam}^2 - \vec{p}_D^2}$ is a proxy for momentum.)

We can use a loose cut to include the daughters of D_s^*, or a tight cut for the directly produced D_s.
The $\phi\pi^+$ problem

- Expect $(f_0(980) \rightarrow K^- K^+) \pi^+$ to contribute to any ϕ mass region, with badly controlled parameters
- Correction might be on the order of 5% or more — but depends on experiment’s mass window, resolution, angular distribution requirements!

Looking at low-mass KK pairs ($m(KK) < 1.005$ GeV) we see evidence for scalar production by looking at helicity angle
Comparison with BaBar $\phi\pi^+$

Can we compare with the BaBar $\mathcal{B}(D_s^+ \to \phi\pi^+)$ result?

- We can use the PDG fit branching ratios...

![Graphs comparing branching fractions of $K_S K^+$, $K^+ K^- \pi^+$, $K^+ K^- \pi^+ \pi^0$, and $\pi^+ \pi^+ \pi^-$ with PDG 2004 fit and BaBar 2005 results.]

- We are more consistent with 3.6% than 4.8%