Charm Dalitz analyses from CLEO-c

Mikhail Dubrovin

CLEO Collaboration and Wayne State University

June 6, 2006 Charm 2006, Beijing

Outline

- CLEO-c opportunities in Dalitz plot (DP) analyses
- $D^+ \rightarrow \pi^- \pi^+ \pi^+$ DP analysis
- χ_{cJ} 3-body decays BR and DP analysis

CLEO-c opportunities in Dalitz plot analyses

- $e^+e^- \rightarrow \psi(3770) \rightarrow D\underline{D}$, 1M $D^0\underline{D}^0$, 0.8M D^+D^- , plan ×3
 - D mesons are produced almost at rest; clean events
 - flavor tag
 - CP tag
 - > ~20 modes of $D \rightarrow P_1 P_2 P_3$ (where $P_i \equiv \pi$, K, η) good for DP analysis $\Box D^+ \rightarrow \pi^- \pi^+ \pi^+$ presented in this talk
- $e^+e^-(\sqrt{s}=4170) \rightarrow D_s^*\underline{D}_s$, 0.2M $D_s^*\underline{D}_s$, plan ×4 > D_{S^+} : DP analyses are just started, i.e. $D_{S^+} \rightarrow K^-K^+\pi^+$
- $e^+e^- \rightarrow \psi(2S)$, $3M \psi(2S)$, by the end of the year ×10 $\rightarrow \psi(2S) \rightarrow \gamma \chi_{cJ}$, $\mathcal{B} \sim \mathcal{P} \%$, tagged χ_{cJ} "factory" $\Box \chi_{cJ}$ 3-body decays analysis is presented in this talk

 $ightarrow \psi(2S) \rightarrow \pi \pi J/\psi$, $\mathscr{B} \sim 50\%$, $\psi \rightarrow h_1 h_2 h_3$, DP analysis or PWA

• We are working hard on DP analysis of many final states

June 6, 2006

Example of purity: $D^+ \rightarrow K^- \pi^+ \pi^+$

- 281 pb⁻¹,
 0.8M D+D⁻
- Clean sample in "single tag" mode
- Signal variables:

$$m_{BC} = \sqrt{E_{beam}^2 - p_D^2},$$
$$\Delta E = E_D - E_{beam},$$

• Not all modes are so clean...

CLEO-c

 $D^+ \rightarrow \pi^- \pi^+ \pi^+$

- Motivations
- Event selection
- Dalitz plot analysis
- Systematic cross checks
- Results

Both σ and κ are well established from E791 data on $D \to 3\pi$ and $K\pi\pi$ and BES II data on $J/\Psi \to \omega\pi^+\pi^-$ and $K^+K^-\pi^+\pi^-$.

• CLEO-c have enough stat. Can we confirm $\sigma(600)$?

June 6, 2006

Mikhail Dubrovin WSU CLEO-c

Event selection

- L=281pb⁻¹
- $e^+e^- \rightarrow \Psi(3770) \rightarrow D\underline{D}$
- Single D reconst.
- Signal variables: $m_{BC} = \sqrt{E_{beam}^2 - p_D^2},$
- $\Delta E = E_D E_{beam},$
- Signal box for DP^{*} $\geq |\Delta E| < 2\sigma$ and
- $> |m_{BC} m_D| < 2\sigma$ Bkgd boxes for DP $\geq |\Delta E_+| < 2\sigma$ and
 - $> 5\sigma < |m_{BC} m_D| < 9\sigma$

Cross-check for Branching Ratios

• Split yield of D⁺ $\rightarrow \pi^-\pi^+\pi^+$ and D⁺ $\rightarrow K^0_S\pi^+$ using m($\pi^+\pi^-$)

8

Formalism

 $\mathcal{L} = -2\sum_{n=1}^{N} \log PDF(x_n, y_n)$

- Log likelihood
- PDF
- Matrix element
- Partial waves (PW_R):
 - > I=2 $\pi^+\pi^+$ S-wave
 - $> \pi^+\pi^-$ S-waves:

Pole_A(s) =
$$\frac{1}{s - s_A}$$
 $s_{\sigma} = (0.47 - i0.22)^2 \text{ GeV}^2$ for $\pi\pi$ S-wave.

 $PDF(x,y) = \begin{cases} \varepsilon(x,y) \\ B(x,y) \\ fN_S |\mathcal{M}(x,y)|^2 \varepsilon(x,y) + (1-f)N_B B(x,y) \end{cases}$

Flatte _{f0(980)} (m) = $\frac{1}{m_{f_0}^2 - m^2 - i(g_{\pi\pi}^2 \rho_{\pi\pi} + g_{K\bar{K}}^2 \rho_{K\bar{K}})}$					
Experiment	$Mass (MeV/c^2)$	$g_{\pi\pi}^2 \ ({\rm MeV/c^2})^2$	$g^2_{Kar{K}}/g^2_{\pi\pi}$		
WA102	$987 \pm 6 \pm 6$	$190 \pm 30 \pm 40$	$\simeq 2$		
E791	$977 \pm 3 \pm 2$	$90 \pm 10 \pm 10$	$4.5 \pm 9.0 \pm 8.0$		
BES II	$965{\pm}8{\pm}6$	$165{\pm}10{\pm}15$	$4.21{\pm}0.25{\pm}0.21$		

 $\mathcal{M} = \sum_{R} c_{R} P W_{R} \Omega_{R} F_{F}$

 $a_{J=0}^{I=2}(m) = \frac{\eta_0^2(m)e^{i\delta_0^2(m)} - 1}{2^i}$

Statistics & survived intermediate states

Sources of systematic uncertainties

Event selection

- Variation of the Signal Box size
- > Fit with and w/o cut of K_{s}^{0} band

Efficiency

Simultaneous fit to data and MC events with float pars

Background

- Variation of the Sideband Boxes
- Simultaneous fit to data and bkgd events with float pars

Model dependence

- Models of E791
- > Other models for $\pi\pi$ S waves, add/remove resonances/waves, free resonance parameters, etc.

 $\chi_{c,I} \rightarrow h^0 h^+ h^-$

- Study 3-body decays of $\chi_{cJ} \rightarrow h^0 h^+ h^-$, produced in e⁺e⁻ $\rightarrow \psi(2S) \rightarrow \gamma \chi_{cJ}$, J=0,1,2
 - Measurement of BR or set UL $\chi_{cJ} \rightarrow \eta \pi^+ \pi^-$, K⁺K⁻π⁰, K⁰_SKπ, ηK⁺K⁻, η'π⁺π⁻, ηpp, π⁰pp, ΛKp

➤ Dalitz plot analysis of 3 modes with high statistics: $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$, K⁺K⁻π⁰, K⁰_SKπ

DP fit for $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

17

Results for $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

Isospin symmetry for $\chi_{c1} \rightarrow K\underline{K}\pi$

 $\Gamma(\chi_{c1} \to \pi^+ K^- K^0) + \Gamma(\chi_{c1} \to \pi^- K^+ \overline{K^0}) = 4\Gamma(\chi_{c1} \to \pi^0 K^+ K^-)$

- Relative factor $-\sqrt{2}$ between amplitudes of $K^0{}_S K\pi$ and $K^+ K^- \pi^0$ does not matter due to separate PDF normalization.
- Constrains for the Dalitz plot analysis:

June 6, 2006

$$\begin{aligned} a_{K^{*+}} &= a_{K^{*-}} = a_{K^{*0}} \equiv a_{\overline{K^{*0}}} \equiv a_{K^{*}} ,\\ \phi_{K^{*+}} &= \phi_{K^{*-}} = \phi_{K^{*0}} = \phi_{\overline{K^{*0}}} \equiv \phi_{K^{*}} ,\\ a_{a(980)^{+}} &= a_{a(980)^{-}} = a_{a(980)^{0}} \equiv a_{a(980)} ,\\ \phi_{a(980)^{+}} &= \phi_{a(980)^{-}} = \phi_{a(980)^{0}} \equiv \phi_{a(980)} .\end{aligned}$$

Combined fit for $\chi_{c1} \rightarrow K^0{}_S K\pi$, K+K- π^0

Mode	Nominal fit	
$K^{*}(892)$	1	
	0	
$K^+K^-\pi^0$: 2×, %	$9.8{\pm}2.0{\pm}1.0$	
$K^0_S K \pi$: 2×, %	$9.9{\pm}2.0{\pm}0.9$	
$K_2^*(1430)$	$0.50{\pm}0.09{\pm}0.12$	
	$-2{\pm}13{\pm}6$	
$K^+K^-\pi^0$: 2×, %	$9.1{\pm}3.4{\pm}3.4$	
$K_S^0 K \pi$: FF $(K_2^*(1430)^+)$, %	$9.3{\pm}3.4{\pm}1.6$	
$K_S^0 K \pi$: FF $(K_2^*(1430)^0), \%$	$8.4{\pm}3.0{\pm}1.5$	
$K_0^*(1430)$	$5.3{\pm}1.0{\pm}0.1$	
	$77 \pm 12 \pm 16$	
$K^+K^-\pi^0$: 2×, %	$17.8 {\pm} 6.3 {\pm} 1.3$	
$K^0_S K \pi$: 2×, %	$18.2{\pm}6.4{\pm}1.6$	
$K^{*}(1680)$	$2.3{\pm}0.5{\pm}0.5$	
	$-38{\pm}12{\pm}12$	
$K^+K^-\pi^0$: 2×, %	$5.5 {\pm} 2.7 {\pm} 1.7$	
$K^0_S K \pi$: 2×, %	$5.6{\pm}2.6{\pm}1.0$	
$a_0(980)$	$10.8 \pm 1.2 \pm 1.2$	
	$-112\pm12\pm3$	
$K^+K^-\pi^0,~\%$	$29.5 {\pm} 7.3 {\pm} 2.8$	
$K^0_S K \pi, \%$	$29.4{\pm}6.9{\pm}2.2$	
$\sum_i FF_i, \%$	~ 115	
$-2\sum \log L$	-545.7	
$Pearson/N_{d.o.f.}$	57.2/53	
$P(Pearson, N_{d.o.f.}), \%$	32.1	
	Charm 2006 Paii	ina

Amplitude, a.u. Phase, degree Fit fraction(s), %

- K*(892), K₂*(1430), a₀(980) are clearly seen but not sufficient to provide good fit.
- We find several models with good fit quality with additional
 - > + $K_0^*(1430)$, K*(1680), Prob.~30%
 - > + NR, Prob.~17%
 - + κ, Prob.~10%
- With larger statistics we hope to resolve this ambiguity.

Charm-2006, Beijing

Preliminary BR (%) for $\chi_{cJ} \rightarrow h^0h^+h^-$

		-	
Mode	χ_{c0}	χ_{c1}	χ_{c2}
$\eta \pi^+ \pi^-$	< 0.021	$0.52 \pm .03 \pm .03 \pm .03$	$0.051 \pm .011 \pm .004 \pm .003$
$\eta K^+ K^-$	< 0.024	$0.034 \pm .010 \pm .003 \pm .002$	< 0.033
$\eta p \bar{p}$	$0.038 \pm .010 \pm .003 \pm .02$	< 0.015	$.019 \pm .007 \pm .002 \pm .002$
$\eta' \pi^+ \pi^-$	< 0.038	$0.24 \pm .03 \pm .02 \pm .02$	< 0.053
$\pi^0 K^+ K^-$	< 0.006	$0.200\pm.015\pm.018\pm.014$	$0.032 \pm .007 \pm .002 \pm .002$
$\pi^0 p \bar{p}$	$0.059 \pm .010 \pm .006 \pm .004$	$0.059 \pm .010 \pm .005 \pm .004$	$0.045\pm.007\pm0.004\pm.003$
$\Lambda K^+ ar p$	$0.114 \pm .016 \pm .009 \pm .007$	$0.034 \pm .009 \pm .003 \pm .002$	$0.088 \pm .014 \pm .07 \pm .006$
$\overline{K^0}K^+\pi^-$	< 0.005	$0.84 \pm .05 \pm .06 \pm .05$	$0.13 \pm .02 \pm .01 \pm .01$

PDG 2004, K⁰_SKπ : <0.08 0.25±0.07 <0.13 BES '99

- Uncertainties: *stat.*, *syst.*, $\mathcal{B}(\psi(2S) \rightarrow \gamma \chi_{cJ})$
- Dalitz plot analysis gives splitting of BR for sub-modes of $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$, K⁺K⁻ π^0 , K⁰_SK π

Summary

- CLEO-c has broad opportunities for DP analyses of **D**, **D**_s, χ_{cJ} , J/ ψ ...
 - single and double tagging technique
 - flavor and CP tags
- Using ~0.8M D⁺D⁻ we performed the D⁺→ π⁻π⁺π⁺ DP analysis.
 > σ(600) or low mass π⁺π⁻ S wave is required by CLEO-c data.
- Using ~3M ψ (2S) we study ψ (2S) $\rightarrow \gamma \chi_{cJ}$, $\chi_{cJ} \rightarrow h^0 h^+ h^-$, J=0,1,2
 - > Measurement of BR or set UL for 3 χ_{cJ} states × 8 modes: $\chi_{cJ} \rightarrow \eta \pi^+ \pi^-$, K⁺K⁻ π^0 , η K⁺K⁻, $\eta p p$, $\pi^0 p p$, K⁰_SK π , $\eta' \pi^+ \pi^-$, AKp
 - > Dalitz plot analysis of 3 modes: $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$, K⁺K⁻ π^0 , K⁰_SK π
- More CLEO-c results of DP analyses are expected soon.