Charmonium Decays and Spectroscopy at CLEO

CLEO's well-understood detector and large samples in the charmonium region provide powerful probes of the $c\overline{c}$ system. In this talk I'll cover:

- Resonance properties: Γ_{ee} , widths of J/ψ , $\psi(2S)$
- Decays: $\chi_{cJ} \rightarrow h^+ h^- h^0$, $\eta^{(')} \eta^{(')}$; search for $\psi(2S) \rightarrow \eta_c 3\pi$
- Above threshold charmonium: $\psi(3770) \to X J/\psi, \ \gamma \chi_{cJ}$
- New States: Y(4260)

Not covering many topics...

The CLEO-c Detector

- Detector slightly modified from Υ physics configuration: silicon vertex detector replaced with (all stereo) drift chamber
- DAQ, trigger, software, etc. from CLEO-III with only minor changes
- Particle ID (from *dE/dx*, Čerenkov) better due to lower *p* tracks
- For charmonium analyses typically identify leptons with calorimeter information
- Tracking: $\delta p/p = 0.6\%$ at 1 GeV
- Csl calorimeter: δE/E = 4% at 100 MeV

Datasets

All CLEO-c data is relevant to charmonium analyses.

Critical samples:

- 3 million $\psi(2S)$ decays (half in the CLEO III configuration)
- \bullet 281 pb^{-1} at 3.77 GeV (1.8 million $\psi(3770)$ decays)
- \bullet 13.2 pb $^{-1}$ at 4.26 GeV

In addition we have

- 25 million more $\psi(2S)$ decays on tape
- \bullet 300 pb $^{-1}$ at 4.17 GeV
- 47 pb^{-1} at other points between 3.97–4.2 GeV

Radiative Return

Can produce a 1^{--} resonance below the nominal collision energy with two different enhancements:

- The incoming particles can emit a photon and lower their energy to the resonance's peak (**a**);
- The resonance can be produced on the tail of its lineshape (+ soft photons)
 (b).
- The latter forms an irreducible background to searches for transitions in higher charmonia

Example:
$$e^+e^- \rightarrow \psi(3770) \rightarrow \pi^+\pi^- J/\psi$$
 contaminated by $e^+e^- \rightarrow \gamma_{soft}\psi(2S)$, $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$

Γ_{ee} in Radiative Return

 Γ_{ee} values of various $c\bar{c}$ states measure the wavefunctions and are prime targets for lattice calculations.

- $\bullet\,$ Total radiative return cross-section $\propto \Gamma_{ee}$
- For nominal CM energy far out on the tail of the resonance, the total radiative return cross-section is essentially independent of Γ_{tot}
- If we reconstruct a particular decay X, we measure Γ_{ee} B_X; combine with our high-precision branching fraction measurements to get Γ_{ee} or Γ_{tot}

We use the radiative kernel of Kuraev & Fadin (Sov. J. Nucl. Phys. 41, 466 (1985)).

Measurements (all at a		
Mode	Measures	
$\gamma + X J/\psi$, $J/\psi ightarrow \ell^+ \ell^-$	$\Gamma_{ee}(\psi(2S))$	
$\gamma + \mu^+ \mu^-$	$\Gamma_{ee}(J/\psi)$, $\Gamma_{tot}(J/\psi)$	
		→ < E > E

- Consequence of search for hadronic transitions $\psi(3770) \rightarrow XJ/\psi$ (more later)
- Fit for the missing momentum distribution of XJ/ψ candidates
- Use precision $\psi(2S) \rightarrow XJ/\psi$ BFs (PRL 94, 232002 (2005)) to get Γ_{ee}
- Combining $X = \pi^+\pi^-$, $\pi^0\pi^0$, η , we get $\boxed{\Gamma_{ee}(\psi(2S)) = 2.54 \pm 0.03 \pm 0.11 \text{ keV}}$

(PDG: $2.48 \pm 0.06 \text{ keV}$)

Missing momentum of $\pi^+\pi^- J/\psi$

PRL 96, 082004 (2006)

$\Gamma_{\!ee},\;\Gamma_{\!tot}(J/\psi)$

- Look for J/ψ peak in μ⁺μ⁻ mass spectrum (ignore ISR photon)
- Suppress radiative return to $\psi(2S)$
- Normalize observed yield with either luminosity and expected efficiency or the yield ratio with the observed nonresonant $\gamma \mu^+ \mu^-$ using QED prediction of rate. Quoted result combines these methods.
- For $\mathcal{B}(J/\psi \rightarrow \mu\mu)$ use CLEO measurement (PRD **71**, 111103(R) (2005))

$$\begin{split} \Gamma_{ee} \mathcal{B}(J/\psi \to \mu\mu) &= 0.3384 \pm 0.0058 \pm 0.0071 \text{ keV} \\ \Gamma_{ee} &= 5.68 \pm 0.11 \pm 0.13 \text{ keV} \\ \Gamma_{tot} &= 95.5 \pm 2.4 \pm 2.4 \text{ keV} \text{ (PDG04: } 91.0 \pm 3.2 \text{ keV}) \\ \Gamma_{ee}(\psi(2S))/\Gamma_{ee}(J/\psi) &= 0.45 \pm 0.01 \pm 0.02 \end{split}$$

PRD 73, 051103(R) (2006)

Although the wide $c\bar{c}$ states above $D\overline{D}$ threshold are usually considered only as sources of open charm, they still exhibit typical onia behavior

- Expect radiative and hadronic transitions to lower charmonium states
- Rates for $\psi(3770)$ will be affected by admixture of 2^3S_1 state

We have observed both hadronic and radiative transitions from $\psi(3770)$ to other charmonium states.

$\psi(3770) \rightarrow XJ/\psi$

- BES found $\mathcal{B}(\psi(3770) \rightarrow \pi^+\pi^- J/\psi) =$ $(0.34 \pm 0.14 \pm 0.09)\%$ (PL B605, 63 (2005))
- Search for $\psi(3770) \rightarrow XJ/\psi$, $X = \pi^{+}\pi^{-}, \pi^{0}\pi^{0}, \eta, \pi^{0}$
- Major background is tail of $\psi(2S)$ **Breit-Wigner**

Mode	Sig	B (%)
$\pi^+\pi^-$	11.6σ	$0.189\pm0.020\pm0.020$
$\pi^0\pi^0$	3.4σ	$0.080\pm0.025\pm0.016$
η	3.5σ	$0.087 \pm 0.033 \pm 0.022$
π0	_	< 28 (90% C.L.)

Missing momentum of $\pi^+\pi^- J/\psi$

PRL 96, 082004 (2006)

< ∃ > DPF/JPS, 31 Oct 2006 10 / 28

3

$\psi(3770) \to \gamma \chi_{cJ} \to \gamma \gamma J/\psi$

- Reconstruct $\gamma \gamma \ell^+ \ell^-$
- Veto $\gamma\gamma$ mass consistent with π^0 or η
- $\ell^+\ell^-$ has J/ψ mass, $\gamma\gamma$ has correct recoil mass
- Radiative Bhabha suppression in $\gamma\gamma e^+e^-$
- Fit the energy spectrum of the softer photon

 $\begin{array}{l} \mathfrak{B}(\gamma\chi_{c0}) < 44 \times 10^{-3} \ (90\% \ \text{C.L.}) \\ \mathfrak{B}(\gamma\chi_{c1}) = (2.8 \pm 0.5 \pm 0.4) \times 10^{-3} \\ \mathfrak{B}(\gamma\chi_{c2}) < 0.9 \times 10^{-3} \ (90\% \ \text{C.L.}) \end{array}$

Softer photon energy spectrum. Dotted line is contribution from $\psi(2S)$ radiative return.

PRL 96, 182002 (2006)

DPF/JPS, 31 Oct 2006

$\psi(3770) \rightarrow \gamma \chi_{cJ} \rightarrow \gamma (nK^{\pm})(m\pi^{\pm})$

- χ_{c0} suppressed in $\gamma\gamma J/\psi$ analysis due to small $\mathcal{B}(\chi_{c0} \rightarrow \gamma J/\psi)$
- Instead reconstruct χ_{cJ} decays to hadrons
- Use four modes: 2K, 2K2π, 4π, 6π
- Measure ratios to equivalent $\psi(2S)$ transitions to cancel the χ_{cJ} branching fractions

$$\begin{split} & \mathcal{B}(\gamma\chi_{c0}) = (7.3\pm0.7\pm0.6)\times10^{-3} \\ & \mathcal{B}(\gamma\chi_{c1}) = (3.9\pm1.4\pm0.6)\times10^{-3} \\ & \mathcal{B}(\gamma\chi_{c2}) < 2.0\times10^{-3} \text{ (90\% C.L.)} \end{split}$$

Photon energy spectrum, summed over all modes. Blue dashed line is contribution from $\psi(2S)$ radiative return.

PRD 74, 031106 (2006)

Charmonium at CLEO

DPF/JPS, 31 Oct 2006

$\psi(3770)$ Radiative Transitions Summary

• Combine two analyses' results to get
$$\label{eq:basic} \begin{split} & \mathcal{B}(\gamma\chi_{c1}) = (0.29\pm0.05\pm0.04)\% \end{split}$$

	$\psi(3770) \rightarrow \gamma \chi_{cl}$		
	J = 0	J = 1	J = 2
B (%)	0.73 ± 0.09	0.29 ± 0.06	< 0.09
Γ (keV)	172 ± 30	70 ± 17	< 21
Theory Γ predictions			
Rosner non-relativistic	523 ± 12	73 ± 9	24 ± 4
Ding-Qin-Chao			
non-relativistic	312	95	3.6
relativistic	199	72	3.0
Eichten-Lane-Quigg			
non-relativistic	254	183	3.2
coupled-channel	225	59	3.9
Barnes-Godfrey-Swanson			
non-relativistic	403	125	4.9
relativistic	213	77	3.3

Relativistic corrections needed for quantitative agreement

(Rosner, PRD 64, 094002 (2001); DQC, PRD 44, 3562 (1991); ELQ, PRD 69, 094019 (2004); BGS, PRD 72, 054026 (2005))

χ_{cJ} Decays

$$\begin{split} & \mathcal{B}(\psi(2S) \to \gamma \chi_{cJ}) \sim 9\% \text{ per state} \\ & \text{makes } \psi(2S) \text{ data very useful for} \\ & \text{probing } \chi_c \text{ properties} \end{split}$$

With $3 \times 10^6 \ \psi(2S)$ decays, can begin to perform Dalitz analysis on χ_{c1} decays!

Will discuss:

- A selection of three-body decays, Dalitz structure
- $\bullet~\eta^{(\,\prime\,)}\eta^{(\,\prime\,)}$ decays

Inclusive photon spectrum from $\psi(2S)$ decays showing peaks for $\gamma \chi_{cJ}$ transitions (PRD **70**, 112002 (2004))

$\chi_{cJ} \rightarrow h^+ h^- h^0$

- Not exhaustive three-body decay list
- Peaks clearly separated
 - We actually see signals in modes with charged multiplicity up
 - to 8, and modes with multiple neutrals,

Peter Onyisi

Charmonium at CLEO

DPF/JPS, 31 Oct 2006

э

Preliminary branching fractions (%):

Mode	Χc0	Χc1	Χc2
$\eta \pi^+ \pi^-$	< 0.021	$0.52\pm.03\pm.03\pm.03$	$0.051 \pm .011 \pm .004 \pm .003$
$\eta K^+ K^-$	< 0.024	$0.034\pm.010\pm.003\pm.002$	< 0.033
η <i>p</i> p	$0.038\pm.010\pm.003\pm.02$	< 0.015	$0.019\pm.007\pm.002\pm.002$
$\eta' \pi^+ \pi^-$	< 0.038	$0.24\pm.03\pm.02\pm.02$	< 0.053
$\pi^0 K^+ K^-$	< 0.006	$0.200\pm.015\pm.018\pm.014$	$0.032\pm.007\pm.002\pm.002$
$\pi^0 p \bar{p}$	$0.059\pm.010\pm.006\pm.004$	$0.014\pm.005\pm.001\pm.001$	$0.045\pm.007\pm.004\pm.003$
$\overline{K}^{0}K^{+}\pi^{-*}$	< 0.010	$0.84\pm.05\pm.06\pm.05$	$0.15\pm.02\pm.01\pm.01$
$\Lambda K^+ \bar{p}^*$	0.114 \pm .016 \pm .009 \pm .007	$0.034\pm.009\pm.003\pm.002$	$0.088\pm.014\pm.007\pm.006$

* includes charge conjugate

- CsI resolution allows easy access to the π^0 and η modes
- Most are first measurements or vastly improved limits

- Sufficient statistics in $\chi_{c1} \rightarrow \pi^+ \pi^- \eta$ and $KK\pi$ to investigate substructure, but:
 - χ_{c1} polarization depends on polar angle, so *should* do a partial wave analysis, but not enough events
 - Instead do "incoherent" analysis where intermediate states don't interfere
 - Account for angular distributions from a spin 1 decay (assume random parent polarization)
- Use isospin to relate amplitudes contributing to $\overline{K}^0 K^+ \pi^-$, $K^0 K^- \pi^+$, $K^+ K^- \pi^0$ and fit simultaneously; this results in e.g.

$$a_{K^{*+}} = a_{K^{*-}} = a_{K^{*0}} = a_{\overline{K}^{*0}}$$

- Dominant features: $a_0(980)\pi$ and $f_2(1270)\eta$
- Significant contribution from low-mass $\pi^+\pi^-$, parametrized with a simple " σ -pole"

Preliminary

Prob 66%

3

- *K**(892), *K*₀*(1430), *K*₂*(1430), *a*₀(980) seen
- Non-resonant component or κ doesn't improve fit probability

Preliminary

 $\chi_{cJ} \rightarrow \eta^{(\prime)} \eta^{(\prime)}$

- Probe ratios of singly and doubly OZI-suppressed diagrams (Q. Zhou, PRD 72, 074001 (2005))
- Reconstruct:

•
$$\eta \rightarrow \gamma \gamma$$
, $\pi^+ \pi^- \pi^0$, $\pi^+ \pi^- \gamma$
• $\eta' \rightarrow \pi^+ \pi^- \eta$, $\pi^+ \pi^- \gamma$

- Combine two η^(') candidates to form a χ_{cJ}, then combine with a photon to obtain a ψ(2S)
 - Don't use $\chi_{\textit{cJ}} \to 4\gamma$ mode due to inefficient trigger in CLEO III
- $\chi_{c1} \rightarrow PP$ forbidden

 $\chi_{cJ}
ightarrow \eta^{(\prime)} \eta^{(\prime)}$

Branching fractions (%):

Mode	X <i>c</i> 0	Χc2
ηη	$0.31 \pm .05 \pm .04 \pm .02$	< 0.047
ηη′	< 0.050	< 0.023
$\eta'\eta'$	$0.17\pm.04\pm.02\pm.01$	< 0.031

Third uncertainty from $\mathcal{B}(\psi(2S) \rightarrow \gamma \chi_{cJ})$

CLEO, BES results on plot from Zhou *x*-axis is DOZI/SOZI amplitude ratio

э

2

$\psi(2S) \rightarrow \eta_c \, 3\pi$

Suggestion that $\psi(2S)$ does not annihilate directly to three gluons, but instead the $c\bar{c}$ pair survives soft gluon emission (Artoisenet *et al.*, PL B628, 211 (2005))

Estimate
$$\mathcal{B}(\psi(2S) \rightarrow \eta_c \pi^+ \pi^- \pi^0) \sim \mathcal{O}(1\%)$$

(> $\mathcal{B}(\psi(2S) \rightarrow \gamma \eta_c)$!)

CLEO searches for this mode, reconstructing exclusive η_c decays:

η_c decay mode	Branching ratio (%)
$K^+K^-\pi^0$	0.95 ± 0.27
$η \pi^+ \pi^-$, $η o \gamma \gamma$	1.288 ± 0.473
$\eta\pi^+\pi^-$, $\eta o\pi^+\pi^-\pi^0$	0.738 ± 0.271
$K^+K^-\pi^+\pi^-$	1.5 ± 0.6
$\pi^+\pi^-\pi^+\pi^-$	1.2 ± 0.3
$K^-K^0\pi^+*$	3.8 ± 1.1

* $K^- K^0 \pi^+$ searched for both in $K_S \to \pi^+ \pi^-$ and in $K^- 4\pi$ recoil mass.

- $\psi(2S) \rightarrow J/\psi + X$ vetoed
- Positive particle ID for all tracks
- $0.98 < Visible energy/E_{cm} < 1.02$
- Efficiency ~ 0.8% 3.1% depending on mode
- 90% upper limit: 1.1×10^{-3}

Histogram: MC expectation from

 $\mathcal{B}(\psi(2S) \to \eta_c \, 3\pi) = 1\%$

New state Y(4260) seen by BaBar in $e^+e^- \rightarrow \gamma_{ISR}\pi^+\pi^- J/\psi$ (PRL 95, 142001 (2005))

For ISR production must be 1^{--} state, but not at an expected mass for a charmonium vector

 $\Gamma(Y(4260)\to\pi^+\pi^-J/\psi)$ much larger than expected for above-threshold charmonium

CLEO has two confirmations of BaBar signal:

- Same mode using CLEO III Υ data
- Direct production at $E_{cm} = 4.26$ GeV

Y(4260) in ISR

- Uses 13.3 fb⁻¹ taken from the $\Upsilon(1S)$ to the $\Upsilon(4S)$
- Reconstruct $\pi^+\pi^-e^+e^-$ and $\pi^+\pi^-\mu^+\mu^-$
- Leptons kinematically fit to J/ψ mass; Y mass resolution ~ 5 MeV
- 4.9σ detection; excellent signal to background

Submitted to PRD-RC

Fit to single Gaussian-smeared Breit-Wigner + ISR cross-sections gives:

$$\begin{split} M &= 4284^{+17}_{-16} \pm 4 \text{ MeV} \\ \Gamma &= 73^{+39}_{-25} \pm 5 \text{ MeV} \\ \Gamma_{ee} \mathcal{B}(Y \to \pi^+ \pi^- J/\psi) = 8.9^{+3.9}_{-3.1} \pm 1.9 \text{ eV} \end{split}$$

No suggestion of multiple resonances

Peter Onyisi

Can produce Y(4260) directly in e^+e^- collisions at the appropriate energy

- Clean, high rate, and sensitive to rarer decays, but
- Cannot probe lineshape without a scan

Use same apparatus as for $\psi(3770) \rightarrow \pi^+\pi^- J/\psi$ Use 13.2 pb⁻¹ at 4.26 GeV (+ other points at $E_{cm} = 3.97 - 4.20$ GeV) Signal is $\pi^+\pi^- J/\psi$ at zero missing momentum

Y(4260) direct production

- Radiative return to ψ(2S) checks analysis; consistent with expectations
- π⁰π⁰ : π⁺π⁻ ratio suggests isospin zero (disfavors e.g. ρ⁰χ_{cJ} molecule)
- Evidence for K^-K^+ transition
- Lower charmonium states have small $\pi^+\pi^- J/\psi$ couplings: disfavors Y(4260) enhancement through $\psi(3S)$ mixing
- No sign of $\sigma(600)$ or $f_0(980)$ in $\pi^+\pi^-$ mass distribution.

Mode	σ (pb), $\sqrt{s}=$ 4260 MeV
$\pi^+\pi^- J/\psi$	$58^{+12}_{-10}\pm4$
$\pi^0\pi^0 J/\psi$	$23^{+\tilde{12}}_{-8}\pm 1$
K^-K^+J/ψ	$9^{+9}_{-5}\pm 1$

Peter Onyisi

- CLEO-c's detector and direct production of charm states enables clean and high-precision spectroscopy and measurements of cc decays
- Hadronic and radiative transitions have been seen from $\psi(3770)$
- Y(4260) decays have been probed
- We will soon be able to analyze a $\psi(2S)$ dataset \approx 8 times larger
- There's a lot of excitement ahead!