Interference Effects in D Meson Decays

D. Cinabro Wayne State University FPCP 2006, 12 April

Why Interference Effects?

- Provide unique information
- Phases and amplitudes are otherwise inaccessible
- Need these to extract fundamental parameters (CKM elements for example) from other measurements
- Challenge and input for QCD

Outline

New results (since summer 2005) are thin

- D→KKπ⁰ Dalitz analysis for D→KK* strong phase from CLEO-III
- D \rightarrow 3 π Dalitz analysis from CLEO-c
- Quantum Correlations in D⁰D⁰ decays from the ψ" for phases and mixing parameters from CLEO-c

CLEO Data Sets

CLEO-III data on Y(4S), 9/fb with charm produced in continuum or from B decay
CLEO-c data on the ψ", 281/pb, which corresponds to 1.4M D pairs.

CLEO-III: $D \rightarrow KK\pi^0$

■ Motivation is to extract strong phase difference in D→K*K

See Grossman, Ligeti, and Soffer (PRD 67(2003)07130) and Rosner and Suprun (PRD68(2003)054010) for how this helps measure CKM γ (ϕ_3) in charged B decay

$D \rightarrow KK\pi^0$

 Both charges of K* and φ contributions clearly visible
 Interference between K*'s is also clear

		-		
	Amplitude	Phase	Fit Fraction	
FIT A	This fit is used for the result auoted			
S.L.=18.6%		for the result qu	0100.	
K^{*+}	1.0 (fixed)	0.0° (fixed)	$(46.1 \pm 3.1)\%$	
K^{*-}	$0.52 \pm 0.05 \pm 0.04$	$332^{\circ} \pm 8^{\circ} \pm 11^{\circ}$	$(12.3 \pm 2.2)\%$	
ϕ	0.64 ± 0.04	$326^\circ\pm9^\circ$	$(14.9 \pm 1.6)\%$	
NR	5.62 ± 0.45	$220^{\circ}\pm5^{\circ}$	$(36.0 \pm 3.7)\%$	
FIT B	This fit tests sensitivity to the $K\pi$ S-wave shape			
S.L.=17.2%				
K^{*+}	1.0 (fixed)	0.0° (fixed)	$(48.1 \pm 4.5)\%$	
K^{*-}	0.52 ± 0.05	$313^\circ\pm9^\circ$	$(12.9 \pm 2.6)\%$	
ϕ	0.65 ± 0.05	$334^\circ\pm12^\circ$	$(16.1 \pm 1.9)\%$	
κ^+	1.78 ± 0.43	$109^\circ\pm17^\circ$	$(12.6 \pm 5.8)\%$	
κ^-	1.60 ± 0.29	$128^\circ \pm 17^\circ$	$(11.1 \pm 4.7)\%$	

#	Systematic Check	Uncertainty in δ_D	Uncertainty in r _D
1	Adding other reasonable resonances	±11°	± 0.04
2	Changing the fitting region on the DP	± 2°	± 0.02
3	Fitting $(m_{K^{-}\pi^{0}}^{2}, m_{K^{+}\pi^{0}}^{2})$ rather than $(m_{K^{+}\pi^{0}}^{2}, m_{K^{+}K^{-}}^{2})$	± 1° (<)	± 0.03
4a / 4b	Variation in π^0 cuts (Pull mass acceptance, Energy cuts)	$\pm 4^{\circ} / \pm 3^{\circ}$	± 0.02 / ± 0.01 (<)
5	Variation in D* fractional momentum ("X") cut	± 5°	± 0.01
6	RICH cuts*	± 5°	± 0.03
7	m _{KKπ} acceptance	± 2°	± 0.01
8	∆M acceptance	± 2°	± 0.01 (<)
9	Vary size of the ΔM vs. $m_{KK\pi}$ window	± 2°	± 0.02
10	Vary dE/dx Parameters**	$\pm 1^{\circ}$	± 0.01
11	Vary the Original Signal Fraction	± 5°	± 0.01
12	Vary the Original Signal Fraction via Penalty Term	± 1°	± 0.01 (<)
13	Vary the background parameters	$\pm 8^{\circ}$	± 0.01
14	Vary the efficiency parameters	± 4°	± 0.05
15	Vary the width of the ϕ by allowing it to float	± 1° (<)	± 0.01
	Total Systematic Error (Added as in reference [14]):	±11°	± 0.04

CLEO-III: $D \rightarrow KK\pi^0$

- Preliminary
- $\delta_{D \rightarrow K^*K}$ = 332°±8°±11°, large interference
- |A(D→K*-K+)|/ |A(D→K*+K-)|= 0.52±0.05±0.04
- Precision limited by non-K* contributions to the decays
- Observed branching fractions consistent with previous measurements

$D \rightarrow 3\pi$ Dalitz

- Symmetry under interchange of likesign pions
- Dalitz analysis on high mass versus low mass unlike-sign pion combinations
- Big vertical stripe is $K_s \pi$

$D \rightarrow 3\pi$ Dalitz

- Worry that efficiency will be difficult in corners of the Dalitz plot since D⁺ starts nearly at rest.
- Looks good, changes are smooth.
- Model with both MC bin-by-bin and polynomial fit.

$D \rightarrow 3\pi$ Dalitz

Backgrounds from sidebands (offset in ΔE to insure that it remains on the Dalitz plot)
 Add in K_s, ρ, f⁰(1370) to represent possible resonance contributions

$D \rightarrow 3\pi$ Dalitz: Many potential contributions

Resonance	$Mass (MeV/c^2)$	Width (MeV/c^2)	$\mathcal{B}(R \to \pi \pi)$ (%)
$\rho(770)$	$775.8 {\pm} 0.5$	$150.3 {\pm} 1.6$	~ 100
$f_2(1270)$	1275.4 ± 1.2	185.1 ± 3.5	$84.8 {\pm} 2.5$
$f_0(1370)$	1200 to 1500	200 to 500	seen
	1350 ± 50	265 ± 40	with $f_0(1500)$
	1410 ± 50		$w/o f_0(1500)$
	$1434 \pm 18 \pm 9$	$173 \pm 32 \pm 6$	
$\rho(1450)$	1465 ± 25	400 ± 60	seen
$f_0(1500)$	1507 ± 5	109 ± 7	$34.9 {\pm} 2.3$
$f_0(1710)$	1714 ± 5	$140 {\pm} 10$	seen, $K\bar{K}$ -domin.
$f_0(1790)$	$1790\substack{+40 \\ -30}$	270^{+60}_{-30}	seen
σ	$478^{+24}_{-23}\pm 17$	$324_{-40}^{+42}\pm21$	seen?
$f_{2}'(1525)$	1525 ± 5	73 ± 6	$0.82 {\pm} 0.15$
$ ho_3(1690)$	$1688.8{\pm}2.1$	161 ± 10	$23.6 {\pm} 1.3$
ho(1700)	1720 ± 20	$250{\pm}100$	seen
$f_2(1950)$	1945 ± 13	475 ± 19	seen
$f_4(2050)$	$2034{\pm}11$	222 ± 19	$17.0 {\pm} 1.5$

$D \rightarrow 3\pi$ Dalitz				
FF in %	E791	CLEOc		
ρπ	33.6±3.9	20.0±2.5		
σπ	46.3±9.2	41.8±2.9		
f ₂ π	19.4±2.5	18.2±2.7		
f ₀ (980)π	6.2±1.4	4.1±0.9		
f ₀ (1500)π		3.4±1.3		
Non-res	7.8±6.6	<3.5		
ρ(1450)π	0.7±0.8	<2.4		
$Prob(\chi^2)$	96.3	27.8		

CLEO-c: $D \rightarrow 3\pi$ Dalitz

- Still preliminary
- Need to consider other models of $\pi\pi$ S-wave (for example replace σ and f₀ contributions by generalized $\pi\pi$ interaction) to compare with FOCUS which used the K-matrix
- Broad agreement with E791 (σ contribution, first observation for CLEO)

CLEO-c: TQCA

- The Quantum Correlation Analysis
- ee $\rightarrow \gamma^* \rightarrow D^0 \overline{D^0}$ is C -1
- K⁻π⁺ vs K⁺π⁻ interfere and thus sensitive to DCSD and strong phase
- Time integrated rate depends on both $\cos \delta_{D \to K\pi}$ and mixing parameter $y = \Delta \Gamma / 2\Gamma$
- K⁻π⁺ vs K⁻π⁺ forbidden unless there is mixing.

- K⁻π⁺ vs semileptonic measures isolated decay rate and tags flavor of decaying D
- Different sensitivity to mixing vs DCSD
- D decays to CP eigenstates also interfere and opposite semileptonics to get isolated rate, flavor tags for yet another dependence on y and strong phase
- CP eigenstate vs CP eigenstate shows maximal correlations

And measure branching fractions simultaneously

TQCA:Semileptonics

Electron Momentum (GeV)

Electron Momentum (GeV)

CP tags vs CP tags clearly shows Quantum Correlation TQCA

No QC		K-K+	π-π+	$K_s \pi^0 \pi^0$	$K_s \pi^0$
Data			CP+		CP-
K-K+		5.2±0.4	4.5±0.3	5.7±0.4	16.0±0.6
		-2.2±1.9	0.1±0.9	1.6±1.3	39.6±6.3
π-π+	С		1.1±0.2	2.2±0.2	5.8±0.4
	Ρ		0.2±1.4	1.6±1.3	14.0±3.7
$K_s \pi^0 \pi^0$	+			1.2±0.2	7.3±0.4
				1.0±1.0	19.0±4.4
K _s π ⁰					9.7±0.5
C	P-				3.0±1.7

TQCA

Data clearly favors QC interpretation showing constructive and destructive interference and no effect as predicted

Parameter	CLEO TQCA	PDG or CLEOc
У	-0.057±0.066±?	0.008±0.005
r ²	-0.028±0.069±?	(3.74±0.18)X10 ⁻³
r (2cosδ _{D→Kπ})	0.130±0.082±?	
R _M	(1.74±1.47±?)x10 ⁻³	< ~1x10 ⁻³
B(D→Kπ)	(3.80±0.029±?)%	(3.91±0.12)%
B(D→KK)	(0.357±0.029±?)%	(0.389±0.012)%
B(D→ππ)	(0.125±0.011±?)%	(0.138±0.005)%
$B(D{\rightarrow}K_{s}\pi^{0}\pi^{0})$	(0.932±0.087±?)%	(0.89±0.41)%
B(D→K _s π ⁰)	(1.27±0.09±?)%	(1.55±0.12)%
B(D ⁰ →Xev)	(6.21±0.42±?)%	(6.46±0.21)%

CLEO-c: TQCA

- Obviously still preliminary, but very promising
- Systematics look tractable (< stats)</p>
- Number of CP tags is limit so working on adding more
- C+ fraction < 0.06±0.05±? on ψ"</p>
- Ultimate sensitivity with projected CLEO-c data set y ±0.012, x² ±0.0006, $\cos \delta_{D \rightarrow K\pi}$ ±0.13, x($\sin \delta_{D \rightarrow K\pi}$) ±0.024 (needs C+1 initial state from running above the ψ ")

Conclusions

- Unique information from interference effects in D decays
- All since summer 2005 from CLEO
- $\delta_{D \to K^*K} = 332^{\circ} \pm 8^{\circ} \pm 11^{\circ}$ and $|A(D \to K^{*-}K^{+})| / |A(D \to K^{*+}K^{-})| = 0.52 \pm 0.05 \pm 0.04$ in $D \to KK\pi^{0}$ Dalitz
- D→3π Dalitz agrees with E791 on need for low mass ππ S-Wave contribution
- CLEO TQCA sensitive to D mixing parameters and $\delta_{D \rightarrow K\pi}$