Dalitz Plot Analyses at CLEO-c

Paras Naik

Carleton University

Hadron 2007 Tuesday, 9 October 2007 <u>Heavy Meson Spectroscopy</u>

1

Introduction

- Charm three-body analyses from several experiments summarized in PDG
- Usual analysis technique for
 P → 3P (D → ABC) decays is the
 Dalitz plot analysis technique
- Dalitz plot is M_{AB}^2 vs. M_{BC}^2
 - Lorentz invariant variables
 - Only two degrees of freedom for $P \rightarrow 3P$
 - Phase space is "flat" in these variables
- Thus <u>structure</u> on the Dalitz plot is due to the internal dynamics of the decay

<u>Structure</u>

- Analyze structure on the Dalitz plot to elucidate a broad range of physics topics
 - (Doubly-)Cabibbo suppressed decays CLEO III $D^{\theta} \rightarrow K^+ K^- \pi^{\theta}$
 - CP Violation
 - Charm mixing
 - Properties of light mesons
 - Properties $K\pi \& \pi\pi S$ -wave

Studying $\pi\pi$ and $K\pi$ S-wave

- S-wave Breit-Wigner Isobars $\sigma(500) \rightarrow \pi^+\pi^ \kappa(800) \rightarrow K\pi$ improve the fits for $D^+ \rightarrow \pi^+ \pi^- \pi^+$, $D^0 \rightarrow K_s \pi^+ \pi^-$, and $D^+ \rightarrow K^- \pi^+ \pi^+$ but are not required to model $D^0 \rightarrow K^- \pi^+ \pi^0$ or $D^0 \rightarrow \pi^+\pi^-\pi^0$ K-matrix Models for $D^+ \rightarrow \pi^+\pi^-\pi^+$ & $D^0 \rightarrow K_s \pi^+ \pi^-$ do not require $\sigma(500)$ pole
- Less model dependent approaches are desirable

E.M. Aitala et al. (E791 Collaboration), Phys. Rev. Lett. 89, 121801 (2002).

4

About CLEO-c

- CLEO-c is a charm facility experiment
 - Cornell Electron Storage Ring (CESR)
 - Now in the final year of data taking
 - Shutdown date: April 1, 2008
- The main focus of CLEO-c is on precision measurements of D, D_s , and $\psi(2S)$ decays
- 27 million $\psi(2S)$ events
- 572 pb⁻¹ at $D\overline{D}$ threshold [$\psi(3770)$, 3770 MeV]
- 314 pb⁻¹ at maximal $D_s^*\overline{D_s}$ production [4170 MeV]

CLEO-c Dalitz plot Analyses

 $e^+e^- \rightarrow \psi(3770) \rightarrow DD$

- $\mathbf{D}^+ \rightarrow \pi^+ \pi^- \pi^+$
- $D^+ \rightarrow K^- \pi^+ \pi^+$
- $D^+ \rightarrow K^+ K^- \pi^+$
- $D^0 \rightarrow K_S \pi^0 \pi^0$
- $D^0 \rightarrow K_{S,L} \pi^+ \pi^-$

Phys. Rev. D 76, 012001 (2007)	281 pb ⁻¹
EPS 2007, Preliminary results	281 pb⁻¹
NEW, Preliminary results	572 pb ⁻¹
NEW, Preliminary results	281 pb ⁻¹

281 pb⁻¹

$D^+ \rightarrow K^- \pi^+ \pi^+$

EPS' 07 conference: *hep-ex/0707.3060*

The Dalitz plot shown has been folded because of the symmetry of the two π^+ .

The K^{*}(892) band is clearly seen.

>60% K π S-wave has been seen by previous experiments.

Sets of $K\pi$ waves interfering allow us to apply a quasi- model independent partial wave analysis (QMIPWA).

We compare fits of isobar and QMIPWA techniques in CLEO-c to the same fits done by E791.

We also expect a small I=2 $\pi\pi$ *S*-wave

E.M. Aitala *et al.* (E791 Collaboration), Phys. Rev. Lett. 89, 121801 (2002).
 E.M. Aitala *et al.* (E791 Collaboration), Phys. Rev. D73, 32004 (2006).

$D^+ \rightarrow K^- \pi^+ \pi^+ Comparison Summary$

EPS' 07 conference: *hep-ex/0707.3060*

Comparison of CLEO-c and E791.

Only statistical errors are shown for CLEO-c.

(Systematic errors should have similar magnitudes).

Fit Fractions					
	ISOBAR		QMIPWA		
Mode	E791 [5]	CLEO-c	E791 [6]	CLEO-c	
NR	$13.0\pm 5.8\pm 4.4$	10.4 ± 1.3	see S wave	see S wave	
$\overline{K}^{+}(892)\pi^{+}$	$12.3 \pm 1.0 \pm 0.9$	11.2±1.4	$11.9 \pm 0.2 \pm 2.0$	10.0±0.3	
$\overline{K}_{0}^{*}(1430)\pi^{+}$	$12.5 \pm 1.4 \pm 0.5$	10.5±1.3	see S wave	11.4 ± 3.6	
$\overline{K}_{2}^{*}(1430)\pi^{+}$	$0.5 \pm 0.1 \pm 0.2$	0.40±0.04	0.2±0.1±0.1	0.476 ± 0.014	
$\overline{K}^{*}(1680)\pi^{+}$	2.5±0.7±0.3	1.36±0.16	$1.2 \pm 0.6 \pm 1.2$	2.52±0.08	
κ π +	47.8±12.1±5.3	31.2 ± 3.6	see S wave	see S w <i>av</i> e	
Total S wave	73±15	52±4	$78.6 \pm 1.4 \pm 1.8$	67.4 ± 1.3	
χ^2/ν , Prob.(%)	46/63, 94%	448/388, 2%	277/277, 47.8%	368/346, 19.5%	

CLEO-c Preliminary

E.M. Aitala *et al.* (E791 Collaboration), Phys. Rev. Lett. 89, 121801 (2002).
 E.M. Aitala *et al.* (E791 Collaboration), Phys. Rev. D73, 32004 (2006).

$D^+ \rightarrow K^- \pi^+ \pi^+$: Adding I = 2 $\pi\pi$ S-wave Isobar model and QMIPWA

I = 2 ππ S wave has been observed in ππ scattering

We use a unitary I=2 amplitude.

We fit for the binned I=2 to confirm our unitary amplitude

Data require it (fit probability improves)

Affects $K\pi S$ wave slightly

Discussion: *S* waves in $D^+ \rightarrow K^- \pi^+ \pi^+$

- $K\pi S$ wave
 - We do not use a form factor for S wave
 - We do not distinguish I=1/2, 3/2
 - Amplitude is almost constant below $K_0^*(1430)$
 - Binned wave shows a minor deviation from the isobar model
 - Phase shows slow variation from -100° to $\sim 0^{\circ}$,
 - This is well described by the complex pole + $K_0^*(1430)$
 - I=2 $\underline{\pi\pi} S$ wave slightly changes results for $\underline{K\pi} S$ wave

More to come... working with 572 pb⁻¹ sample now...

$D^+ \rightarrow K^+ K^- \pi^+$

New! CLEO-c Preliminary

Singly Cabibbo-suppressed decays could exhibit CP-violating asymmetry.

Expected to be $< O(10^{-3})$.

Observation > $O(10^{-3})$ may mean new physics.

Submodes can be isolated, and we may also take CP asymmetry for submodes.

 $egin{aligned} \mathbf{D}^+ &
ightarrow \mathbf{K}^*(892) \; \mathbf{K}^+ \ \mathbf{D}^+ &
ightarrow \mathbf{K}_0^*(1430) \; \mathbf{K}^+ \ \mathbf{D}^+ &
ightarrow \phi \; \pi^+ \end{aligned}$

$$A_{CP} = \frac{N_{D^+}/\epsilon_{D^+} - N_{D^-}/\epsilon_{D^-}}{N_{D^+}/\epsilon_{D^+} + N_{D^-}/\epsilon_{D^-}}$$

14

$D^0 \to K_S \ \pi^0 \ \pi^0$

New! CLEO-c Preliminary

No resonant substructure in PDG First DP analysis with two π^0 particles.

The Dalitz plot shown has been created symmetrically, swapping the identical π^0 particle for each event. This appears as two entries for each event.

K*(892) bands are visible.

Interesting opportunity to look for $\pi\pi$ Swave since there is no ρ^0 resonance (like in $K_s \pi^+ \pi^-$).

One neutral D decays to $K_S \pi^0 \pi^0$. The other D decays to "flavor-tag" modes $D^0 \rightarrow \{K^- \pi^+, K^- \pi^+ \pi^0, K^- \pi^+ \pi^+ \pi^-\}.$

17

 $\pi\pi$ S-wave (σ) and K π S-wave (κ) describe our statistics equally well. 18

Measuring c_i with CP-tagged Dalitz Plots

 $D^0 \rightarrow K_{S,L} \pi^+ \pi^-$

CP Tag

Ψ(3770)

DD

Binned Dalitz plot

 $K_{S,L}\pi\pi$

n² (GeV²/c⁴)

Correlated $D\overline{D}$ pairs (C = -1) are produced at CLEO-c We tag the $K_S \pi \pi$ sample by reconstructing $D \rightarrow CP \pm$ eigenstates

$$\boldsymbol{D}_{CP\pm} = \frac{\boldsymbol{D}^{\theta} \pm \overline{\boldsymbol{D}^{\theta}}}{\sqrt{2}}$$

For *CP*-tagged Dalitz plots, number of events in Dalitz plot is

$$M \sim |f_D|^2 + |\overline{f_D}|^2 \pm 2|f_D||\overline{f_D}| \cos(\delta_D)$$

Divide the $(K_s \pi \pi) D$ Dalitz plot into bins based on model-inspired binning, symmetric under interchange of $\pi^+ \leftrightarrow \pi^-$ interchange.

Define
$$\rightarrow c_i = \langle \cos(\delta_D) \rangle_i$$

 c_i can be determined by counting *CP*-tagged bins

CLEO-c Sensitivity to c_i in $\mathbf{D}^0 \to \mathbf{K}_{S,L} \pi^+ \pi^-$

Conclusion

- CLEO-c is making a strong contribution to
 - our understanding of $K\pi$ and $\pi\pi$ S-waves
 - our understanding of strong phases
 - narrowing the D model error on measurement of CKM model γ
- More to come...
 - Double Dalitz plot analyses
 - $(K_{\rm S} \pi^+ \pi^- \text{ vs. } K_{\rm S} \pi^+ \pi^-, K_{\rm L} \pi^+ \pi^-)$
 - D_S Dalitz plots
- More data being taken
 - 800 pb⁻¹ at $\psi(3770)$ will be available soon!
 - 630 pb⁻¹ near 4170 MeV by end of CLEO-c run

BACKUP SLIDES

QMIPWA Invariant mass projections

 $D^+ \rightarrow K^- \pi^+ \pi^+$

Dalitz plot Analysis Technique

- Internal dynamics of $D^{\theta} \rightarrow ABC \ (P \rightarrow 3P)$
- Daughter 4-momenta: 12 parameters
 - Conservation of 4-momentum: 4 constraints
 - Masses of Decay products: 3 constraints
 - **D** is spin-0 : 3 orientations uninteresting
- Decay described by 2 degrees of freedom
 - 3 Lorentz invariants $(M_{AB})^2$, $(M_{AC})^2$, $(M_{BC})^2$, related by: $(M_D)^2 + (M_A)^2 + (M_B)^2 + (M_C)^2 = (M_{AB})^2 + (M_{AC})^2 + (M_{BC})^2$
- Dalitz plot is $(M_{AB})^2$ vs $(M_{BC})^2$
 - Phase space is "flat" in these variables

Isobar model results

Starting from the dominant contributions clearly seen in the data, additional resonances are added or removed one by one to improve the fit. A contribution is kept if the amplitude is significant at more than 3 standard deviations and the phase uncertainty is less than 30°.

Mode	Amplitude, a.u.	Phase, $(^{\circ})$	Fit Fraction, $\%$
$ ho(770)\pi^+$	1(fixed)	0(fixed)	$20.0{\pm}2.3{\pm}0.9$
$f_0(980)\pi^+$	$1.4{\pm}0.2{\pm}0.2$	$12\pm10\pm5$	$4.1{\pm}0.9{\pm}0.3$
$f_2(1270)\pi^+$	$2.1{\pm}0.2{\pm}0.1$	$-123{\pm}6{\pm}3$	$18.2{\pm}2.6{\pm}0.7$
$f_0(1370)\pi^+$	$1.3{\pm}0.4{\pm}0.2$	$-21 \pm 15 \pm 14$	$2.6{\pm}1.8{\pm}0.6$
$f_0(1500)\pi^+$	$1.1{\pm}0.3{\pm}0.2$	$-44{\pm}13{\pm}16$	$3.4{\pm}1.0{\pm}0.8$
σ pole	$3.7{\pm}0.3{\pm}0.2$	$-3{\pm}4{\pm}2$	$41.8 \pm 1.4 \pm 2.5$
$\sum_i FF_i, \%$			90.2

Mode	Upper Limit on Fit Fraction, $\%$
$ ho(1450)\pi^+$	<2.4
N.R.	< 3.5
I=2 $\pi^+\pi^+$ S-Wave	< 3.7
$f_0(1710)\pi^+$	< 1.6
$f_0(1790)\pi^+$	<2

Fits to the Mass projections

Comparison of amplitudes and phases

The two models used to extend the isobar model give amplitudes and phases which are close to the isobar results but are a better physical description of the *S* wave component

- $\pi\pi$ waves: 18 parameters for amplitude and 18 for phase.
- *P* wave
 - K^{*}(892) Breit-Wigner
 - Binned amplitude replacing $K^*(1680)$ in isobar model
- *D* wave
 - Binned amplitude replacing $K_2^{*}(1430)$ in the isobar model
- Other, narrow resonances parameterized by Breit-Wigners.
- Parameters of the S, P, and D waves float one wave at a time

Comparison with E791, Isobar

 $D^+ \rightarrow K^- \pi^+ \pi^+$

CLE	0-c Pre	liminc	iry	D	$^+ \rightarrow \mathrm{K}^- \pi$
	Mode	Parameter	E	791	CLEO-c
	NR	<i>a</i> (a.u.)	$1.03 \pm 0.$	$.30 \pm 0.16$	8.0±1.0
		ϕ (°)	$-11\pm$	14 ± 8	$-19{\pm}9$
		FF (%)	$13.0{\pm}5.8{\pm}4.4$		$10.4{\pm}1.3$
	$\overline{K}^{*}(892)\pi^{+}$	<i>a</i> (a.u.)	1 (fixed)		1 (fixed)
		ϕ (°)	0 (fixed)		0 (fixed)
		FF (%)	$12.3 \pm 1.0 \pm 0.9$		11.2 ± 1.4
	$\overline{K}_{0}^{*}(1430)\pi^{+}$	a (a.u.)	$1.01\pm0.10\pm0.08$		3.1 ± 0.1
		ϕ (°)	$48\pm$	7 ± 10	48 ± 3
		FF (%)	$12.5 \pm 12.5 \pm $	1.4 ± 0.5	10.5 ± 1.3
		$m (MeV/c^2)$	1459_{-}	$\pm 7 \pm 12$	1461 ± 3
		$\Gamma (MeV/c^2)$	$175 \pm$	12 ± 12	169 ± 5
	$\overline{K}_{2}^{*}(1430)\pi^{+}$	a (a.u.)	$0.20\pm0.05\pm0.04$		0.98 ± 0.04
		ϕ (°)	-54:	$\pm 8\pm7$	-29 ± 4
		FF (%)	$\begin{array}{c} 0.5{\pm}0.1{\pm}0.2\\ 0.45{\pm}0.16{\pm}0.02\end{array}$		0.40 ± 0.04
	$\overline{K}^{*}(1680)\pi^{+}$	a (a.u.)			6.7 ± 0.5
		ϕ (°)	28 ± 1	13 ± 15	29 ± 4
		FF (%)	$2.5 \pm 0.7 \pm 0.3$		1.36 ± 0.16
($\kappa \pi^+$	a (a.u.)	$-1.97 \pm 0.$	$.35 \pm 0.11$	4.8 ± 0.3
		ϕ (°)	-173:	±8±18	-165 ± 5
	D. I. III	FF (%)	47.8 ± 1	2.1 ± 5.3	31.2 ± 3.6
	Breit-Wigner	$m (MeV/c^2)$	797±	19 ± 43	805 ± 11
		$\Gamma (MeV/c^2)$	410±	43±87	453±21
	Formfactor	$r_{\kappa}(\text{GeV}^{-1})$	1.6:	± 1.3	1.5(fixed)
		$r_D(\text{GeV}^{-1})$	5.0:	±0.5	5 (fixed)
	Other $R \to K\pi$	$r_R(\text{GeV}^*)$	1.5(1	$\frac{1100}{2}$	1.0(fixed)
	Goodness	χ^{-}/ν , Prob.	40/0	ə(111)	440/300 P=2%

The CLEO-c fit probability for the E791 Isobar model is $\sim 2\%$ and the fit significantly underestimates the data in the range $1.3 < m^2(\pi^+\pi^+) < 1.6 \ (GeV/c^2)^2$

E.M. Aitala et al. (E791 Collaboration), Phys. Rev. Lett. 89, 121801 (2002).

$D^+ \rightarrow K^- \pi^+ \pi^+$: $K\pi$ partial waves Isobar model and QMIPWA

CLEO-c

- We use a binned complex amplitude (100 MeV bin size)
 - K π waves: 26 parameters for amplitude and 26 for phase.
- S wave
 - K₀*(1430) Breit-Wigner
 - Binned amplitude replacing κ & non-resonant in isobar model

