

Charmonium Results

Hanna Mahlke Cornell University Ithaca, NY

Quarkonium Working Group Meeting 10/17-20/07 DESY, Hamburg

Cornell University Laboratory for Elementary-Particle Physics

The Landscape

- All states below DD threshold observed
- 1-- states known best, large samples ψ(2S): 14M BES, 27M CLEO

J/ψ:

- * on-resonance 58M BES, * from $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$ decay: BR ~32%, can tag the transition pions (CLEO: $\varepsilon_{tag} = 75\% \Rightarrow 6.5M$ tagged J/ ψ)
- Era of precision studies and discovery of rare phenomena in 1-- decay
- B(ψ(2S)→γχ_{cJ})~9%, E(γ) selects between J=0,1,2: not far behind 1⁻⁻ in statistical power
 - Performing similar kinds of studies as for 1⁻⁻ decays
- Singlets less well known

New CLEO charmonium results discussed in other presentations:

 $\Box \ \psi(2S) \rightarrow \gamma \ \eta_c(1S):$

- Exclusive and inclusive $\eta_c(1S)$ decays
- $-\eta_c(1S)$ line shape
- $\ \mathsf{BR}(\psi(2S) \to \gamma \ \eta_c(1S))$

Ryan Mitchell's talk (Wednesday) $\Box \quad \psi(2S) \rightarrow \pi^0 h_c, \\ h_c \rightarrow \gamma \eta_c(1S):$

- Exclusive and inclusive $\eta_c(1S)$ decays
- M(h_c) and hyperfine splitting
- $\begin{array}{l} \mbox{ Product branching fraction} \\ BR(\psi(2S) \rightarrow \pi^0 h_c) \times \\ BR(h_c \rightarrow \gamma \eta_c(1S) \) \end{array}$
- Kam Seth's talk (Friday)

Detailed comparisons between decay modes allow to assess the role of the color octet configuration

27M ψ (2S) decays \Rightarrow over 2M χ_{cJ} produced for J=0,1,2 each

Can probe exclusive decays down to BR ~10⁻⁴

Exploit kinematic constraints in a fit of measured momenta/ energies to m(ψ (2S)), don't need to constrain to m(χ_{cJ}) in addition

$\chi_{cJ} \rightarrow 2$ hadrons

- Glue-rich environment different from 1⁻ states
- " $|\chi_{cJ}\rangle = |c\bar{c}\rangle'' \Rightarrow$ many theory predictions « experimental BR results
- Accurate prediction of 2-hadron decay rates of ³P_J states rely on understanding of the role of the color octet contribution:

$$\left|\chi_{cJ}\right\rangle = c_0 \left(c\overline{c}\right)_1 + c_1 \left(c\overline{c}\right)_8 g$$

"Is that all?"

• Known 2-body modes amount to only a few percent of χ_{cJ} decays

Next: 14 two-body decay modes of χ_{CJ} (13x hadronic + $\gamma\gamma$)

Analysis relies on identification of all decay products and kinematic fit to initial $\psi(2S)$ four-momentum.

$\chi_{cJ} \rightarrow MM, M=\pi, K$

Previous measurements had uncertainties of 10% or larger

Clean signals seen in CLEO data

CLEO uncertainties <=10%

$\chi_{cJ} \rightarrow MM, M=\pi, K$

Branching Fraction Results: CLEO preliminary

BR (10 ⁻³)		$\pi^+\pi^-$	$\pi^0\pi^0$	K⁺K⁻	K _S K _S
χ _{c0}	PDG	4.9±0.6	3.1±0.6	6.0±0.9	2.8±0.7
	CLEO 27M	6.37±0.11±0.20±0.32	2.94±0.07±0.16±0.15	6.47±0.11±0.29±0.32	3.49±0.01±0.15±0.17
	(total error)	(6%)	(8%)	(7%)	(7%)
χ _{c2}	PDG	1.8±0.3	1.1±0.3	0.9±0.2	0.7±0.1
	CLEO 27M	1.59±0.04±0.06±0.10	0.68±0.03±0.05±0.04	1.13±0.03±0.05±0.07	0.53±0.03±0.02±0.03
	(total error)	(8%)	(10%)	(8%)	(7%)

Ratios:

Belle PLB 651, 15 (2007)

	χ _{c0}	χ _{c2}
	0.54±0.03	0.47±0.05
K _s K _s /K⁺K⁻	Belle:	Belle:
	0.49±0.11	0.70±0.24
$\pi^0\pi^0/\pi^+\pi^-$	0.46±0.05	0.43±0.13
	0.55±0.03	0.33±0.03
K _s K _s /π⁺π⁻	Belle:	Belle:
	0.46±0.11	0.40±0.12

Errors:

(stat.) \pm (syst.) \pm (BR($\psi' \rightarrow \gamma \chi_{cJ}$)) CLEO, PRD 70, 112002

(2004) CLEO improves upon precision, is consistent with Belle and with isospin counting expectations $K_SK_S : K^+K^- = 1:2,$ $\pi^0\pi^0 : \pi^+\pi^- = 1:2$

 $\chi_{c1} \rightarrow \eta^{(\prime)} \eta^{(\prime)}$

B(J/ ψ → ω f₀(1710)) ~ B(J/ ψ → ϕ f₀(1710)): f₀(1710) is thought to be largely s̄s ⇒ naively expect ϕ preferred over ω

Suggestive of large OZI violating effects in J/ ψ decay?glueball mixing? F. Close,Q. Zhao, PRD 71, 094022 (2005)

Look for similar effects in $\chi_c \rightarrow \eta(\prime)\eta(\prime)$

Use the factorization scheme proposed by Q. Zhao (PRD 72, 074001 (2005))

 $\eta\eta'$ can only go through DOZI, $\chi_{c1} \rightarrow PP$ is forbidden

r = relative strength between singly-OZI and doubly-OZI suppressed transition amplitudes

QWG 10/18/07

H. Mahlke, CLEO

 $\chi_{cJ} \rightarrow \eta^{(\prime)} \eta^{(\prime)}$ branching fractions

 $\chi_{c0} \rightarrow \eta\eta$ and η'η' improved $\chi_{c2} \rightarrow \eta \eta$ observed (1st time) Still no signal for ηη'

CLEO, PRD 70, 112002

CLEO Preliminary Errors: $(stat.) \pm (syst.) \pm (B(\psi' \rightarrow \gamma \chi_{cJ}))$ m(eta(') eta(')) (GeV)

Uses similar analysis technique as for other two-body modes

BR, 10 ⁻³	χ _{c0}	χ_{c2}	
ηη 3.18±0.13±0.18±0.16		$0.51 \pm 0.05 \pm 0.03 \pm 0.03$	
ղ′ղ	<0.25 (90% CL)	<0.05 (90% CL)	
η'η'	$2.12\pm0.13\pm0.11\pm0.11$	< 0.10 (90%CL)	

$\chi_{cJ} \rightarrow \eta^{(\prime)} \eta^{(\prime)}$, comparison with theory

Predicted dependence of BR on r (DOZI/SOZI) Q. Zhao (PRD 72, 074001) (2005)

Result: Data suggest small if any contribution for DOZI decays in 0⁻⁺ channel.

 $\chi_{cJ} \rightarrow \gamma \gamma$

 $\chi_{cJ} \rightarrow \gamma \gamma$ is pure QED in first approximation

Decay rates ⇒ relativistic and radiative corrections (significant in the charmonium system!)

 $\Gamma(\chi \rightarrow \gamma \gamma)$ measurements range from 2-4keV, with smallest error 0.6keV Experimental technique similar to that for χ_{cJ} decays to 2 hadrons

Fit E1 photon or m($\gamma\gamma$) distribution after selecting $\chi_{cJ} \rightarrow \gamma\gamma$

Determine QED background shape from continuum and $\psi(3770)$ samples

 $\chi_{cJ} \rightarrow \gamma \gamma$

CLEO Preliminary Results

PDG Errors: (stat.) ± (syst.) ± (PDG Input)

ave	Parameter	This measurement	PDG 2007	
	$B_1(\hat{\psi}(2S) \rightarrow \gamma \chi_0)$ × $B_2(\chi_0 \rightarrow \gamma \gamma)$ ×10 ⁻⁵	2.32±0.33±0.15		
	[■] B ₁ (ψ(25)→γχ ₂)× B ₂ (χ ₂ →γγ) ×10 ⁻⁵	2.82±0.29±0.21		
	B ₂ (χ ₀ →γγ) × 10 ⁻⁴	2.52±0.36±0.16±0.11	2.76±0.33	
	B ₂ (χ ₂ →γγ) × 10 ⁻⁴	3.20±0.33±0.24±0.18	2.58±0.19	
	Γ(χ ₀ →γγ) keV	2.65±0.38±0.17±0.25	2.87±0.39	
	Γ(χ ₂ →γγ) keV	0.62±0.07±0.05±0.06	0.53±0.05	
	$R=\Gamma(\chi_0\to\gamma\gamma)/\Gamma(\chi_2\to\gamma\gamma)$	0.235±0.042±0.005±0.030	0.184±0.030	
	Also limit the forbidden proces	S: Most precise measureme	e In the In the Int In the Int Int International Internati	e non- stic limit:

B(χ₁→γγ) < 3.6×10⁻⁵, 90% CL.

R=4/15=0.27

Two-photon widths – comparison with theory * -- includes relativistic corrections

† -- includes radiative corrections

Author Year	α_s	$\Gamma(\chi_{c0} \to \gamma \gamma)$	$\Gamma(\chi_{c2} \to \gamma \gamma)$
Barbieri 1976	0.18	3.50	0.93
Bhaduri 1981	0.39	1.27	0.26
Godfrey 1985*	0.34	1.29	0.46
Barnes 1992 [*]	0.4	1.56	0.56
Bodwin 1995	0.25	6.80 ± 1.90	0.82 ± 0.23
Resag 1995	0.365	1.62	0.60
Gupta 1996 ^{*†}	0.316	6.38	0.57
Munz 1996*	0.365	1.39	0.44 ± 0.14
Huang 1996 [†]	0.29	3.72 ± 1.11	0.49 ± 0.15
Schuler 1998		2.50	0.28
Fajfer 2000*		4.61	-
Ebert $2003^{*\dagger}$	0.26	2.90	0.50
CLEO preliminary		2.65 ± 0.49	0.62 ± 0.10

$\chi_{cJ} \rightarrow$ baryon antibaryon

$\chi_{cJ} \rightarrow$ baryon antibaryon

BR, 10⁻⁵ (UL at 90% CL): Errors: (stat.) ± (syst.) ± (BR($\psi' \rightarrow \gamma \chi_{cJ}$))

PDG CLEO	χ _{c0}	χ _{c1}	χ _{c2}
pp	22.5±2.7	7.2±1.3	6.8±0.7
	25.7±1.5±1.5±1.3	9.0±0.8±0.4±0.5	7.7±0.8±0.4±0.5
$\Lambda\overline{\Lambda}$	47±16	26±12	34±17
	33.8±3.6±2.3±1.7	11.6±1.8±0.7±0.7	17±2.2±1.1±1.1
$\Sigma^0 \overline{\Sigma^0}$	-	-	-
	44.1±5.6±2.5±2.2	<4	<6
$\Sigma^+\overline{\Sigma^+}$	-	-	-
	32.5±5.7±4.9±1.7	<6	<6
Ξ-Ξ-	<103	<34	<37
	51.4±6.0±3.8±2.6	8.6±2.2±0.6±0.5	14.5±1.9±1.0±0.9
$\Xi_0 \overline{\Xi}_0$	-	-	-
	33.4±7.0±3.2±1.7	<5	<9

CLEO, PRD 70, 112002 (2004)

New and/or improved branching fraction measurements

Lambda production, as seen by BES, not found to be suppressed relative to protons

(prediction only) $\mathcal{R}_{B} = \Gamma(\Lambda\Lambda)/\Gamma(pp)$						
for J=1,2) χ_{c1}			Xc2			
Theory	Exp. (BES)	CLEO-c	Theory	Exp.(BES)	CLEO-c	
~0.6	4.6±2.3	1.3±0.3	~0.45	5.1±3.1	2.2±0.4	

CLEO preliminary

Survey of four-body decays

Resonant substructure is important for 4π and KK $\pi\pi$, ($\rho\pi\pi$ or K*K π or KK ρ or ...)

Branching fractions and contributions from intermediate resonances determined

Isospin relations: $\rho^+\pi^-\pi^0 = \rho^0\pi^+\pi^-$? ✓ K*K π modes: ✓

$\chi_{cJ} \rightarrow h^+h^-h^0\pi^0$ branching fractions

TABLE IV: Branching fractions (B.F.) with statistical and systematic uncertainties are shown. The symbol "×" indicates product of B.F.'s. The third error in each case is due to the $\psi(2S) \rightarrow \gamma \chi_c$ branching fractions. Upper limits shown are at 90% C.L and include all the systematic errors. The measurements of the three-hadron final states are inclusive branching fractions, and do not represent the amplitudes for the three-body non-resonant decays.

Mode	χ_{c0}	χ_{c1}	χ_{c2}	
	B.F.(%)	B.F.(%)	B.F.(%)	
$\pi^+\pi^-\pi^0\pi^0$	$3.54 \pm 0.10 \pm 0.43 \pm 0.18$	$1.28{\pm}0.06{\pm}0.15{\pm}0.08$	$1.87{\pm}0.07{\pm}0.22{\pm}0.13$	
$\rho^+\pi^-\pi^0$	$1.48 \pm 0.13 \pm 0.18 \pm 0.08$	$0.78 {\pm} 0.09 {\pm} 0.09 {\pm} 0.05$	$1.12{\pm}0.08{\pm}0.13{\pm}0.08$	
$\rho^-\pi^+\pi^0$	$1.56 {\pm} 0.13 {\pm} 0.19 {\pm} 0.08$	$0.78 {\pm} 0.09 {\pm} 0.09 {\pm} 0.05$	$1.11{\pm}0.09{\pm}0.13{\pm}0.08$	
$K^+K^-\pi^0\pi^0$	$0.59 {\pm} 0.05 {\pm} 0.08 {\pm} 0.03$	$0.12 \pm 0.02 \pm 0.02 \pm 0.01$	$0.21 {\pm} 0.03 {\pm} 0.03 {\pm} 0.01$	
$p\bar{p}\pi^{0}\pi^{0}$	$0.11 \pm 0.02 \pm 0.02 \pm 0.01$	< 0.05	$0.08 {\pm} 0.02 {\pm} 0.01 {\pm} 0.01$	
$K^+K^-\eta\pi^0$	$0.32 {\pm} 0.05 {\pm} 0.05 {\pm} 0.02$	$0.12 {\pm} 0.03 {\pm} 0.02 {\pm} 0.01$	$0.13 \pm 0.04 \pm 0.02 \pm 0.01$	
$K^{\pm}\pi^{\mp}K^{0}\pi^{0}$	$2.64 {\pm} 0.15 {\pm} 0.31 {\pm} 0.14$	$0.92{\pm}0.09{\pm}0.11{\pm}0.06$	$1.41{\pm}0.10{\pm}0.16{\pm}0.10$	
$K^{*0}K^0\pi^0 \times K^{*0} \to K^{\pm}\pi^{\mp}$	$0.37 \pm 0.09 \pm 0.04 \pm 0.02$	$0.25 {\pm} 0.06 {\pm} 0.03 {\pm} 0.02$	$0.39 {\pm} 0.07 {\pm} 0.05 {\pm} 0.03$	
$K^{*0}K^{\pm}\pi^{\mp} \times K^{*0} \to K^0\pi^0$			$0.30{\pm}0.07{\pm}0.04{\pm}0.02$	
$K^{*\pm}K^{\mp}\pi^0 \times K^{*\pm} \to \pi^{\pm}K^0$	$0.49 \pm 0.10 \pm 0.06 \pm 0.03$		$0.38{\pm}0.07{\pm}0.04{\pm}0.03$	
$K^{*\pm}\pi^{\mp}K^0 \times K^{*\pm} \to K^{\pm}\pi^0$	$0.32 {\pm} 0.07 {\pm} 0.04 {\pm} 0.02$		$0.30{\pm}0.07{\pm}0.04{\pm}0.02$	
$\rho^{\pm}K^{\mp}K^0$	$1.28 {\pm} 0.16 {\pm} 0.15 {\pm} 0.07$	$0.54{\pm}0.11{\pm}0.06{\pm}0.03$	$0.42 {\pm} 0.11 {\pm} 0.05 {\pm} 0.03$	
Sum:	7.2%	2.4%	3.7%	

Ties to lighter systems

η properties Resonances observed in $χ_{cJ}$ multibody decays

η branching ratios

 $J/\psi \longleftarrow 0 \longrightarrow \eta$ $27M \psi(2S), \psi(2S)$ $B(\psi(2S) \rightarrow \eta J/\psi) = 3.1\%,$ $B(J/\psi \rightarrow l^+l^-) = 12\%,$

Fully reconstruct five final states: $\gamma\gamma + 3\pi^{0} + \pi^{+}\pi^{-}\pi^{0} + \pi^{+}\pi^{-}\gamma + e^{+}e^{-}\gamma$ 38.5 34.0 22.6 4.0 0.9%

Constrain l^+ , $l^- \Rightarrow J/\psi$, constrain J/ψ , η products $\Rightarrow \psi(2S)$

Excellent data/MC agreement

Measurement of ratios allow cancellation of systematics

Invariant mass of η decay products:

η Mass

CLEO: $M(\eta)$ =547.785 ± 0.017 ± 0.057 MeV PRL 99, 122002 (2007) (arXiv:0707.1810)

KLOE: $M(\eta) = 547.873 \pm 0.007 \pm 0.031 \text{ MeV}$ arXiv:0707.4616 (LP07 contribution)

χ_{cJ} multibody decays

3M psi(2S)

Interest:

- Branching fractions
 - Likely a lot
- Substructure analysis
 - CLEO studied h⁺h⁻h⁰ in 3M decays, sufficient events for simple Dalitz analysis in $\eta \pi^+ \pi^-$, K⁺K⁻ π^0 , and K⁻K_S π^+ model describes dominant features, but ignores interference – 20% systematic uncertainty
 - $h^+h^-h^0\pi^0$ also looked promising
- Enlarged data sample will allow to refine technique and to study other multibody modes

 $\chi_{c,l} \rightarrow KK\pi\pi$

 $27M \psi(2S)$ - first look...

Can study charged and neutral pion and kaon combinations

 χ_{cJ} decays to all combinations from all three J states visible, well separated

Substructure: KK and $\pi\pi$

χ_{c0}

Complementary and different structure in six KKππ submodes

Looking at different isospin configurations allows to disentangle components

Summary

- Charmonium is a testing ground for many areas of QCD:
 - Spectroscopy of charmonium states
 - Decay of charmonium states
 - Production of lighter systems

- New results cascading down on the community – need to sort, digest, understand (exp + th!)
- At today's data sample sizes, sensitive to small effects ⇒ discovery and precision studies
- CLEO's 27M ψ (2S) dataset will lay the foundation for future BES studies

Backups

