Leptonic Decays: Measurements of f<sub>D</sub>+ & f<sub>Ds</sub>

Sheldon Stone Syracuse University





## Leptonic Decays: $D \rightarrow \ell^+ \nu$

- c and  $\overline{q}$  can annihilate, probability is proportional to wave function overlap
  - Standard Model decay diagram:



In general for all pseudoscalars:

 $\Gamma(\mathbf{P}^{+} \to \ell^{+} \nu) = \frac{1}{8\pi} G_{F}^{2} f_{P}^{2} m_{\ell}^{2} M_{P} \left( 1 - \frac{m_{\ell}^{2}}{M_{P}^{2}} \right)^{2} |V_{Qq}|^{2}$ 

Calculate, or measure if  $V_{Qq}$  is known, here take  $V_{cd} = V_{us} = 0.2256$ ,  $V_{cs} = V_{ud} = 0.9742$ 

# A Window to New Physics?

 Besides the obvious interest in comparing with Lattice & other calculations of f<sub>P</sub> there are NP possibilities



- CLEO's previous measurement of f<sub>Ds</sub> + Belle's (see Rosner & Stone arXiv:0802.1043) give f<sub>Ds</sub>=274±10 MeV as compared with 241±3 MeV 2+1 unquenched lattice QCD calculation of Follana et.al (PRL 100, 062002 (2008))
- Dobrescu & Kronfeld (arXiv:0803.0512) argue that this can well be the effect of NP, either charged Higgs (their own model) or leptoquarks
- CLEOs previous measurement of f<sub>D</sub>+ was too inaccurate to challenge Follana et al., theory 207±4 versus 223±17 MeV (CLEO)

#### Possibilities

Experiment is wrong: unlikely CLEO measures both μ<sup>+</sup>ν & τ<sup>+</sup>ν, & Belle measures μ<sup>+</sup>ν. Though average is 3.3 σ away, could be a weird fluctuation



- Theory is wrong: very possibly, but Kronfeld is member of competing lattice group
- Both are right: NP is responsible

## **New Physics Possibilities**

Ratio of leptonic decays could be modified e.g. in Standard Model

$$\frac{\Gamma(\mathbf{P}^+ \to \tau^+ \nu)}{\Gamma(\mathbf{P}^+ \to \mu^+ \nu)} = m_{\tau}^2 \left( 1 - \frac{m_{\tau}^2}{M_P^2} \right)^2 / m_{\mu}^2 \left( 1 - \frac{m_{\mu}^2}{M_P^2} \right)^2$$

• If H<sup>±</sup> couple proportional to  $M^2 \Rightarrow$  no effect

See Hewett [hepph/9505246] & Hou, PRD 48, 2342 (1993).

# CLEO's Technique for $D^+ \rightarrow \mu^+ \nu$

- Fully reconstruct a D<sup>-</sup>, and count total # of tags
- Seek events with only one additional oppositely charged track within  $|\cos\theta| < 0.9$  & no additional photons > 250 MeV (to veto D<sup>+</sup>  $\rightarrow \pi^+\pi^0$ )
- Charged track must deposit only minimum ionization in calorimeter [< 300 MeV: case (i)]</li>
- Compute MM<sup>2</sup>. If close to zero then almost certainly we have a  $\mu^+\nu$  decay.

$$MM^{2} = (E_{D^{+}} - E_{\ell^{+}})^{2} - (\vec{p}_{D^{+}} - \vec{p}_{\ell^{+}})^{2}$$

We know  $E_{D^+} = E_{beam}$ ,  $p_{D^+} = -p_{D^-}$ 

# Tags

•Total of 460,000 •Background 89,400



FPCP May, 2008

# The MM<sup>2</sup> Distribution



#### MM<sup>2</sup> Signal Shapes



# Model of K<sup>o</sup>π<sup>+</sup> Tail

- Use double tag D°  $\overline{D}^{\circ}$  events, where both  $D^{\circ} \rightarrow K^{\mp} \pi^{\pm}$
- Make loose cuts

   And D<sup>o</sup> so as not
   to bias distribution:
   require only 4
   charged tracks in
   the event





# Residual Backgrounds for $\mu \upsilon$

 Monte Carlo of Continuum, D<sup>o</sup>, radiative return and other D<sup>+</sup> modes, in μν signal region

| Mode                  | # of events     |
|-----------------------|-----------------|
| Continuum             | $0.8 \pm 0.4$   |
| $\overline{K}^0\pi^+$ | $1.3 {\pm} 0.9$ |
| $D^0 \text{ modes}$   | $0.3 \pm 0.3$   |
| Sum                   | $2.4{\pm}1.0$   |

This we subtract off the fitted yields

# **Background Check**



FPCP May, 2008

# Systematic Errors

| Source of Error                         | %   |
|-----------------------------------------|-----|
| Finding the $\mu^+$ track               | 0.7 |
| Minimum ionization of $\mu^+$ in EM cal | 1.0 |
| Particle identification of $\mu^+$      | 1.0 |
| MM <sup>2</sup> width                   | 0.2 |
| Extra showers in event > 250 MeV        | 0.4 |
| Background                              | 0.7 |
| Number of single tag D <sup>+</sup>     | 0.6 |
| Total                                   | 2.2 |

# Branching Fractions & f<sub>D</sub>+

- Fix  $\tau v/\mu v$  at SM ratio of 2.65
  - □  $\mathscr{C}(D^+ \rightarrow \mu^+ \nu)$  = (3.86±0.32±0.09)x10<sup>-4</sup>
  - □ f<sub>D</sub>+=(206.7±8.5±2.5) MeV
  - This is best number in context of SM
- Float  $\tau v/\mu \upsilon$ 
  - □  $\mathscr{C}(D^+ \rightarrow \mu^+ \nu)$ = (3.96±0.35±0.10)x10<sup>-4</sup>
  - □ f<sub>D</sub>+=(208.5±9.3±2.5) MeV
  - This is best number for use with Non-SM models
- These are preliminary numbers with 818 pb<sup>-1</sup>

## Upper limits on $\tau v \& ev$



## **CP** Violation

- D<sup>+</sup> tags 228,945±551
- D⁻ tags 231,107±552
- μ<sup>-</sup>ν events 64.8±8.1
- μ<sup>+</sup>ν events 76.0±8.6

 $A_{CP} \equiv \frac{\Gamma(D^+ \to \mu^+ \nu) - \Gamma(D^- \to \mu^- \nu)}{\Gamma(D^+ \to \mu^+ \nu) + \Gamma(D^- \to \mu^- \nu)} = 0.08 \pm 0.08$ 

■ -0.05<A<sub>CP</sub><0.21 @ 90% c. l.

#### CLEO Improved Measurement of f<sub>Ds</sub>

- CLEO has two methods of measuring f<sub>Ds</sub>
  - Measure µ<sup>+</sup>ν & τ<sup>+</sup>ν, τ<sup>+</sup>→ π<sup>+</sup>ν using similar MM<sup>2</sup> technique used for D<sup>+</sup>. Update result using new analysis & 30% more data (~400 pb<sup>-1</sup>)

• Measure  $\tau^+ \rightarrow e^+ v v$  by using missing energy. This result has not been updated (~300 pb)

# Use $e^+e^- \rightarrow D_S D_S^*$ at 4170 MeV

- Reconstruct D<sub>S</sub><sup>-</sup>
- Find the  $\gamma$  from the D<sub>S</sub>\* & compute MM<sup>2</sup> from D<sub>S</sub><sup>-</sup> &  $\gamma$ MM\*<sup>2</sup>=(E<sub>CM</sub>-E<sub>p</sub>-E<sub> $\gamma$ </sub>)<sup>2</sup>-(- $\vec{p}_{p}$ - $\vec{p}_{\gamma}$ )<sup>2</sup>
- Select combinations consistent with a missing D<sub>S</sub><sup>+</sup> & count the number
- Find MM<sup>2</sup> from candidate muon for (i) < 300 MeV in Ecal, (ii) E>300 MeV or (iii) e<sup>-</sup> cand.

$$\mathbf{M}\mathbf{M}^{2} = (\mathbf{E}_{CM} - \mathbf{E}_{D} - \mathbf{E}_{\gamma} - \mathbf{E}_{\mu})^{2} - (-\vec{p}_{D} - \vec{p}_{\gamma} - \vec{p}_{\mu})^{2}$$



M(D<sub>S</sub>) (GeV)

## MM\*<sup>2</sup> Distributions From $D_S^- + \gamma$



# $MM^2$ data for $D_S$

case (i) Total of 30 30848±695 20 tags 10 Ge 0 99% of μ<sup>+</sup>ν in case (ii) Events/ 0.01 8 91 E < 300 MeV 55%/45% split of  $\tau^+\nu$ ,  $\tau^+ \rightarrow \pi^+\nu$ 0 in two cases 2 Small e<sup>-</sup> background





# CLEO: $D_S^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \nu$

- $\mathscr{C}(D_S^+ \to \tau^+ \nu) \bullet \mathscr{C}(\tau^+ \to e^+ \nu \nu) \sim 1.3\%$  is "large" compared with expected  $\mathscr{C}(D_S^+ \to Xe^+ \nu) \sim 8\%$
- We will be searching for events opposite a tag with one electron and not much other energy
- Opt to use only a subset of the cleanest tags



# Measuring $D_S^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \nu$

- Technique is to find events with an e<sup>+</sup> opposite  $D_S^-$  tags & no other tracks, with  $\Sigma$ calorimeter energy < 400 MeV
- No need to find  $\gamma$  from  $D_s^*$
- $\mathscr{E}(D_{S}^{+} \rightarrow \tau^{+} \nu)$ =(6.17±0.71±0.36)%
- f<sub>Ds</sub>=273±16±8 MeV



## Branching Ratio & f<sub>Ds</sub> (preliminary)

| Mode                                    | 8 (%)                                                 | f <sub>Ds</sub> (MeV) |
|-----------------------------------------|-------------------------------------------------------|-----------------------|
| (1) μν+τν <b>(fix</b>                   | $\mathscr{B}^{\text{eff}}(D_{s} \rightarrow \mu v) =$ | 268.2±9.6±4.4         |
| SM ratio)                               | (0.613±0.044±0.020)                                   |                       |
| (2) μν only                             | $\mathcal{B}(D_{s} \rightarrow \mu v) =$              | 265.4±11.9±4.4        |
|                                         | (0.600±0.054±0.020)                                   |                       |
| (3) $\tau v$ , $\tau \rightarrow \pi v$ | $\mathcal{B}(D_{s} \rightarrow \tau v) =$             | 271±20±4              |
|                                         | (6.1±0.9±0.2)                                         |                       |
| (4) τν, τ→ <b>e</b> νν                  | $\mathcal{B}(D_{s} \rightarrow \tau v)$ =             | 273±16±8              |
|                                         | (6.17±0.71±0.36)                                      |                       |
| CLEO Average                            |                                                       | 269.4±8.2±3.9         |
| of (1) & (4)                            | Rad. corr.                                            | 267.9±8.2±3.9         |

## Systematic Errors

| Source of Error                                  | %   |
|--------------------------------------------------|-----|
| Finding the $\mu^+$ track                        | 0.7 |
| Particle identification of $\mu^+$               | 1.0 |
| MM <sup>2</sup> width                            | 0.2 |
| Extra showers in event > 300 MeV                 | 0.4 |
| Background                                       | 0.5 |
| Number of single tag D <sub>S</sub> <sup>-</sup> | 3.0 |
| Total                                            | 3.3 |

Belle: 
$$D_S^+ \rightarrow \mu^+ \nu$$

- Look for e<sup>+</sup>e<sup>-</sup>→DKXγ(D<sub>S</sub>), where X=nπ & the D<sub>S</sub> is not observed but inferred from calculating the MM
- Then add a candidate μ<sup>+</sup> and compute MM<sup>2</sup>
- $\mathscr{B}(D_S^+ \to \mu^+ \nu) =$ (0.644±0.076±0.057)%
- f<sub>Ds</sub>=275±16±12 MeV

arXiv:0709.1340v2 [hep-ex]



# $f_{D_s} \ \& \ f_{D_s} \ / \ f_{D^+}$

- Weighted Average CLEO + Belle: f<sub>Ds</sub>=270.4±7.3±3.7 MeV, the systematic error is uncorrelated between the measurements
- Using f<sub>D</sub>+ = (206.7±8.5±2.5) MeV
- f<sub>Ds</sub>/f<sub>D</sub>+ = 1.31±0.06±0.02 Much larger than models
- $\Gamma(D_S^+ \rightarrow \tau^+ \nu) / \Gamma (D_S^+ \rightarrow \mu^+ \nu) = 10.3 \pm 1.1,$ SM=9.72
  - Consistent with lepton universality

#### Other Non-absolute Measurements

| Exp.         | mode               | B                                                 | $\mathcal{E}(D_{S} \rightarrow \phi \pi)$ | f <sub>Ds</sub> (MeV)      |
|--------------|--------------------|---------------------------------------------------|-------------------------------------------|----------------------------|
|              |                    |                                                   | (%)                                       |                            |
| CLEO $[11]$  | $\mu^+ u$          | $(6.2 \pm 0.8 \pm 1.3 \pm 1.6) \cdot 10^{-10}$    | $^{3}$ 3.6±0.9                            | $273\pm19\pm27\pm33$       |
| BEATRICE     | $[12] \ \mu^+ \nu$ | $(8.3 \pm 2.3 \pm 0.6 \pm 2.1) \cdot 10^{-1}$     | $^{3}$ 3.6±0.9                            | $312\pm43\pm12\pm39$       |
| ALEPH $[13]$ | $\mu^+ u$          | $(6.8 \pm 1.1 \pm 1.8) \cdot 10^{-3}$             | $3.6 {\pm} 0.9$                           | $282 \pm 19 \pm 40$        |
| ALEPH $[13]$ | $\tau^+\nu$        | $(5.8 \pm 0.8 \pm 1.8) \cdot 10^{-2}$             |                                           |                            |
| L3 [14]      | $\tau^+\nu$        | $(7.4 \pm 2.8 \pm 1.6 \pm 1.8) \cdot 10^{-10}$    | 2                                         | $299 \pm 57 \pm 32 \pm 37$ |
| OPAL [15]    | $\tau^+ \nu$       | $(7.0 \pm 2.1 \pm 2.0) \cdot 10^{-2}$             |                                           | $283\pm44\pm41$            |
| BaBar $[16]$ | $\mu^+ \nu$        | $(6.74 \pm 0.83 \pm 0.26 \pm 0.66) \cdot 10^{-1}$ | $^{-3}$ 4.71±0.46                         | $283\pm17\pm7\pm14$        |

See arXiv:0802.1043 for references

#### Conclusions

- We are in close agreement with the Follana et al calculation for f<sub>D</sub>+. This gives credence to their methods
- The disagreement with f<sub>Ds</sub> is enhanced



## Questions

- Pick your favorite of the two:
  - If theoretical predictions of f<sub>Ds</sub>/f<sub>D</sub>+ do not agree with the data, why should we believe f<sub>Bs</sub>/f<sub>B</sub> from theory? What does this do to the CKM fits?
  - □ If there is New Physics affecting leptonic D<sub>S</sub> decays, how does it affect B<sub>S</sub> mixing and other B<sub>S</sub> decays? (See A. Kundu & S. Nandi, "R-parity violating supersymmetry, B<sub>S</sub> mixing, & D<sub>S</sub><sup>+</sup> →  $\ell^+\nu$ " [arXiv:0803.1898])

## Future Improvements

- CLEO will further update f<sub>Ds</sub> using at total of ~600 pb<sup>-1</sup>
  - $\square$  50% increase in data for  $\mu\nu$
  - □ 100% increase in data for  $\tau v$ ,  $\tau \rightarrow e v v$
- f<sub>D</sub>+ will not see any major improvements until BES



## Improvements in Analysis

- Increase solid angle to  $|\cos\theta| < 0.9 (+11\%)$
- Now we fit the muon candidate distribution to extract μ<sup>+</sup>ν & τ<sup>+</sup>ν, to extract yield, improves efficiency by ~5%, & also allows us to quote a *C* independent of assuming SM τ<sup>+</sup>ν/μ<sup>+</sup>ν ratio
  - $\hfill\square$  Requires signal shapes for  $\mu^+\nu$  &  $\tau^+\nu$
  - Requires background shapes for K<sup>o</sup>π<sup>+</sup> low MM<sup>2</sup> tail, π<sup>+</sup>π<sup>o</sup> & residual 3 body modes, e.g. τ<sup>+</sup>→μ<sup>+</sup>νν, ρ<sup>+</sup>ν, π<sup>o</sup>μ<sup>+</sup>ν.
  - Requires small residual background subtraction from continuum, etc...
- Backgrounds are now well understood especially from K<sup>o</sup>π<sup>+</sup> peak

## Efficiencies

- Tracking, particle id, E<300 MeV (determined from μ-pairs) = 85.3%
- Not having an unmatched shower > 250 MeV 95.9%, determined from double tag, tag samples
- Easier to find a μν event in a tag then a generic decay (tag bias) (1.53%)

# μν Signal Shape Checked



- Data σ=0.0247±0.0012 GeV<sup>2</sup>
- MC σ=0.0235±0.0007 GeV<sup>2</sup>
- Both average of double Gaussians

# Case(i) With $\tau^+\nu/\mu^+\nu$ Floating

- Fixed
  - **□ 149.7±12.0** μυ
  - 28.5 τν
- Floating
  - **□ 153.9±13.5** μυ
  - $\Box$  13.5±15.3  $\tau v$



## New Physics Possibilities III

- Leptonic decay rate is modified by H<sup>±</sup>
- Can calculate in SUSY as function of m<sub>q</sub>/m<sub>c</sub>,
- In 2HDM predicted

