Precision Charm Meson Decays

Leptonic, Semileptonic, Hadronic

Roy A. Briere

Carnegie Mellon University (+ CLEO & BESIII)

> HQL08 Melbourne 08 June 2008

? Why Charm ?

Previous "wisdom": charm is a bit boring for flavor physics

Cabibbo-allowed decays dominate: hard to see rare processes

D Mixing is suppressed in SM & hard to estimate CP violation suppressed

Light enough to make theory difficult (tough for HQET, etc.) and lots of strong-interaction physics obscuring the weak

Better wisdom: Charm is a gift!

B physics very productive... but limited by theory in many cases.
★ Lattice QCD can help & charm can test it ★

Today's Topics

Leptonic Decays $D_{(s)} \rightarrow \mu v$ to extract decay constants

 $D \rightarrow K l v$, $\pi l v$ to measure form factors Testbeds for modern Lattice QCD

 $D^{o} \rightarrow K\pi \quad D^{+} \rightarrow K\pi\pi \quad D_{s} \rightarrow KK\pi$ normalization from golden-mode branching rations

NOTE: Precision lifetimes (dominated by FOCUS) are also useful !

Current Leaders CLEO-c: Tagging with D pairs very clean Belle/BaBar: Continuum charm large statistics Sometimes using "continuum tagging"

Key issue:

Agreement with latest unquenched Lattice QCD ?

Techniques

CLEO-c uses Tagging: $e^+e^- \rightarrow \psi(3770) \rightarrow D^0D^0, D^+D^$ $e^+e^- @4170 MeV: D_s^+D_s^{*-} \& c.c.$ creates ONLY D pairs

Fully reconstruct one $D_{(s)}$ - Can then infer neutrinos

(constrained kinematics)

- or get absolute hadronic BFs

Typical tag rate per D: 15% / 10% / 5% D⁰ / D⁺ / D_s

Belle:

Has used a similar technique, with exclusive final states from continuum at 10 GeV

Decay Constants: Pre-FPCP2008

D⁺: Consistent with LQCD, but tests limited by experimental precision

D_s: Disagreement with latest Lattice result

D Decay Constant Status

Previous CLEO & Belle results average to give $f_{Ds} = 274 \pm 10$ MeV (see Rosner & Stone arXiv:0802.1043) Best 2+1 unquenched lattice QCD obtains $241 \pm 3 \text{ MeV}$ (Follana et.al, PRL 100, 062002 (2008)) Dobrescu & Kronfeld argue that this could be the effect of NP, either charged Higgs (their own model) or leptoquarks (see arXiv:0803.0512) Kundu & Nandi suggest R-parity violating SUSY to explain large f_{Ds} and B_s mixing phase (see arXiv:0803.1898) Modest update from CLEO-c at FPCP2008 recapped here, along with 2007 Belle result.

Next, recall the previous CLEO f_{D} + result: f_{D} = 223 ± 17 MeV Imprecise, compared to Follana et al., lattice: 207 ± 4 MeV Significant update from CLEO-c at FPCP2008 recapped here.

 $D^+ \rightarrow \mu^+ v \ Update$

Neutrino from 4-momentum balance can plot (missing mass)²: MM² Clean, isolated signal peak: Power of D-tagging: Recall that the signal is one track + neutrino !

 $D^+ \rightarrow \mu^+ v$ Results

Fix $\tau v/\mu v$ at SM ratio of 2.65 : $\mathscr{C}(D^+ \rightarrow \mu^+ \upsilon) = (3.86 \pm 0.32 \pm 0.09) \times 10^{-4}$ $f_{D^+} = (206.7 \pm 8.5 \pm 2.5) \text{ MeV}$ Best number in context of SM

Float $\tau v/\mu \upsilon$:

 $\mathscr{C}(D^+ \rightarrow \mu^+ \upsilon) = (3.96 \pm 0.35 \pm 0.10) \times 10^{-4}$ f_D+ = (208.5 ± 9.3 ± 2.5) MeV consistent

Best number for use with Non-SM models

 $D_s \rightarrow \tau^+ \upsilon$ ($\tau^+ \rightarrow e^+ \upsilon \upsilon$)

PRL100, 161801 (2007) 298 pb⁻¹

Use only cleanest tags (for now)

Always have >1 neutrino! Abandon use of MM² Semileptonic events tend to have hadronic Energy in CsI (but careful re: K_L!)

Plot E_{extra} in Calorimeter (Extra: not tag or e)

 $CLEO-c D_s$ Summary

Mode	E (%)	f _{Ds} (MeV)
(1) $\mu\nu + \tau\nu$	$\mathscr{B}^{\mathrm{eff}}(\mathrm{D}_{\mathrm{s}} \rightarrow \mu \nu) =$	$268.2 \pm 9.6 \pm 4.4$
(fix SM ratio)	$(0.613 \pm 0.044 \pm 0.020)$	
(2) $\mu\nu$ only	$\mathcal{B}(D_s \rightarrow \mu \nu) =$	$265.4 \pm 11.9 \pm 4.4$
	$(0.600 \pm 0.054 \pm 0.020)$	
(3) $\tau \nu, \tau \rightarrow \pi \nu$	$\mathcal{B}(D_s \rightarrow \tau v) =$	$271 \pm 20 \pm 4$
	$(6.1 \pm 0.9 \pm 0.2)$	
(4) $\tau \nu, \tau \rightarrow e \nu \nu$	$\mathcal{B}(D_s \rightarrow \tau v) =$	$273 \pm 16 \pm 8$
	$(6.17 \pm 0.71 \pm 0.36)$	
CLEO Average		$269.4 \pm 8.2 \pm 3.9$
of (1) & (4)		

 \sim CLEO-c updated both D and D_s at FPCP2008:

Due to time, I can't do justice to the many nice cross-checks...

v please see S. Stone's FPCP talk for more details.

Belle: $D_s \rightarrow \mu^+ v$

 M_{rec}^{2} (DKX $\gamma\mu$) / GeV²/c⁴

Decay Constant Summary

Weighted Ave. CLEO+Belle: $f_{Ds} = 270.4 \pm 7.3 \pm 3.7$ MeV (systematic errors are uncorrelated) Using f_{D} + = (206.7 ± 8.5 ± 2.5) MeV

 $f_{Ds}/f_{D^+} = 1.31 \pm 0.06 \pm 0.02$ larger than predicted

 $\Gamma(D_{s}^{+} \rightarrow \tau^{+}\nu) / \Gamma(D_{s}^{+} \rightarrow \mu^{+}\nu) = 10.3 \pm 1.1, SM = 9.72$

Consistent with lepton universality

Note: BaBar f_{Ds} PRL 98, 141801 (2007) & others depending on "B($D_s \rightarrow \varphi \pi$)" are omitted here...

Semileptonic Decays

Concentrate on Form Factors

- o Pseudoscalar modes for Lattice QCD tests
 - Key: $D \rightarrow \pi I v$ as test of $B \rightarrow \pi I v$ (needed for V_{ub})
- o $D_s \rightarrow KKev$: newest precision result

Omitting: o Many other branching ratios esp. $D \rightarrow \rho/\omega/\eta/K_1 e v$ (CLEO) o Non-Parametric FF analysis (CLEO)

o Untagged $D \rightarrow Klv$ (BaBar)

Excellent background suppression Small K- π feed-across due to threshold kinematics Past results: K- π signals overlapped completely!

 $D^{o} \rightarrow \pi l v$, K l v

PRL 97, 061804 (2006) 282 fb⁻¹

Use "Continuum tagging" again: e⁺e⁻ → D(*)_{tag} D*_{signal} X. Reconstruct all particles (except for neutrino) Tagging provides absolute normalization ~56,000 tagged D⁰

Cabibbo suppressed

Cabibbo favored

Impressive results in difficult production environment Both e and m measured, but only D⁰ vs. CLEO-c: 1000x lumi, but ~3x less signal events & ~10x worse signal/noise

 $D^{0+} \rightarrow \pi e v$, Kev (untagged)

arXiv:0712.1012 arXiv:0712.0998 (to appear PRL/D) 281 pb⁻¹

Branching Ratios

Significant improvement in precision by recent BaBar/Belle/CLEO-c measurements (CLEO-c best, especilly for *πev*)

Much of the visible variation is due to the phase-space factor (P^3) .

D → Kev Form Factor Pole Mass

(from Ian Shipsey's talk at LQCD workshop, FNAL, Dec 2007 – see for more extensive discussion of form factor results)

 $D \rightarrow \pi ev$ Form Factor vs. LQCD

Careful re: comparisons on next page:

If paremetrization wrong, comparisons can be misleading! Much recent effort on systematic series expansions... but no time today

A recent paper: T. Becher & R. Hill PLB 633, 61 (2006) (previous work: Boyd, Grinstein, Lebed, Savage, Arnesen, Rothstein, Stewart...) CLEO untaggged paper uses these expansions along with older pole forms

More Tests of LQCD

Theoretical errors larger than experimental

 $D_{c} \rightarrow K^{+}K^{-}ev FFs$

Untagged Analysis

Detailed form factor analysis 25K events (more complicated w/ a vector meson)

> $D_s \rightarrow \phi e \nu$ $D_s \rightarrow f_0 e \nu$ (first evidence)

Precision Hadronic Branching Fractions

Systematics:

tracking, PID efficiency always present BUT... some nice techniques to measure w/ tagging

Background issues: better with threshold tagging...

Similar considerations for semileptonic, leptonic but statistics still dominate there (interested in Cabibbo-suppressed semileptonic, or rare fully leptonic modes...)

Topics:

Hadronic modes and Golden-Mode BFs: D⁰, D⁺ & D_s Quantum correlations & K π Phase

Omitted

- o In Backup slides: Interference D \rightarrow K_{L/S} π
- o MANY other decay modes (Cabibbo-suppressed, ...)

 $D^{o} \rightarrow K^{-} \pi^{+}$

Partial reconstruction of $B^0 \rightarrow D^{*+}(X) \vdash v_l$ Slow pion used to estimate D^* momentum Full recon of $D^0 \Rightarrow K^-\pi^+$ within inclusive sample

BF = (4.007 ± 0.037 ± 0.072)% Systematics: 1.8% = 1.5% ex|cusive effic. ⊕ 1.0% inclusive

D_c Branching Ratios

PRL 100, 161804 (2008) 298 pb⁻¹

 \mathcal{B}_{AM} for mass within $\pm \Delta M$ of ϕ

Value	This result \mathcal{B} (%)
B ₅	$1.69 \pm 0.08 \pm 0.06$
\mathcal{B}_{10}	$1.99 \pm 0.10 \pm 0.05$
\mathcal{B}_{15}	$2.14 \pm 0.10 \pm 0.05$
\mathcal{B}_{20}	$2.24 \pm 0.11 \pm 0.06$

NEW key normalizing mode: $B (D_S \rightarrow K^+ K^- \pi^+)$ $= (5.50 \pm 0.23 \pm 0.16) \%$

 ϕ π^{+} "Branching fraction" ill-defined

Quantum Coherence & $K\pi$ phase

Correlated D pairs are produced at the ψ (3770):

arXiv:0802.2264 arXiv:0802.2268 PRL/D to appear 281 pb⁻¹

Simultaneous fit to: hadronic & semilep modes + external mixing inputs: (x, y, x'², y', r²)

 $cos \ \delta = 1.10 \pm 0.35 \pm 0.07 \\ \delta = (22^{+11} + 9^{-11})^{\circ}$

Not Covered...

Mixing, Dalitz, Spectroscopy: well-covered in other talks

Much other work: o CLEO: other hadronic & semileptonic modes (Cabibbo-suppressed, etc.) o BaBar: D → Klv (2007, untagged) o Various: CPV searches, Rare decays o etc.

Conclusions

Tests of Lattice QCD becoming precise Intriguing disagreement for f_{Ds} ? Charm threshold best for experimental precision

Outlook

Lattice QCD marches onwards with CPU, techniques, ... Much existing data left to mine at BaBar, Belle, CLEO Very soon we will have data at BESIII & LHC-b, ... Super-B, ... ???

Charm is alive & well

Acknowledgments

Thanks to CLEO collaborators I've borrowed from: P. Onyisi, M. Shepherd, T. Skwarnicki, S. Stone, W. Sun, ...

- & to my Charming BaBar & Belle colleagues: (S. Prell, Y. Sakai, P. Chang) Thanks for convenient web pages with results!
- & to my new BESIII collaborators: Thanks for providing me a future of continuing charm physics...
- & finally to the HQL08 organizers: Thanks for the opportunity to speak, and the great conference

BACKUP SLIDES

f_{Ds}: D_s Mass Peaks

f_{Ds} : $D_s \gamma$ (Missing Mass)²

Systematics on BF

 $D^+ \rightarrow \mu^+ v$

 $D_s \rightarrow \mu^+ \upsilon \& \tau^+ \upsilon$ $(w/\tau^+ \rightarrow \pi \upsilon)$

Source of Error	%
Finding the µ ⁺ track	0.7
Min. ionization of μ^+ in EM cal	1.0
Particle identification of μ^+	1.0
MM ² width	0.2
Extra showers in event > 250 MeV	0.4
Background	0.7
Number of single tag D ⁺	0.6
Total	2.2

Source of Error	%
Finding the µ ⁺ track	0.7
Particle identification of µ+	1.0
MM ² width	0.2
Extra showers with > 300 MeV	0.4
Background	0.5
Number of single tag D _S ⁻	3.0
Total	3.3

D^{0,} D⁺ Branching Fractions

Key points:

 $\begin{array}{ll} {\it ${\cal B}$ independent of N_{DD}} & {\rm (usual Achilles' heel)} \\ {\scriptstyle ϵ_i / ϵ_{ii} ~ ϵ_i : ~ independent of tag j } \end{array}$

Systematics:

-- Study efficiencies with tag data

CLEO-c semileptonic tagging analysis technique: big impact

1st Observations:

Precision Measurements:

Lattice Workshop 2007, FNAL 10-11 December 2007 Ian Shipsey

 $D \rightarrow K l v$

Neutrino "reconstruction" technique Tagged with $D^{*-} \rightarrow D^0 p \pi^-$

Very large signal statistics.

Compared to CLEO-c results:

- Factor ~300 more luminosity
- Factor ~5 more signal events
- Normalization to BR(D⁰ \rightarrow K⁻ π^+) [determined by CLEO-c]
- Poor q² resolution (unfolding needed for form factor measurements)
- Much worse signal/noise (method not suitable for Cabibbo suppressed decays)

Interference in $K_L \pi$, $K_S \pi$

