Recent Results in Charm Physics

Topics

- Rare Charm Processes as probes of New Physics
 - Spectroscopy of New States

John Yelton (University of Florida)
CLEO, CMS and BES III Collaborations

Thanks to ICHEP reviews of David Asner and Galina Pakhlova

SPLIT 2008

The Experiments

THREE DIFFERENT ENVIRONMENTS STILL OPERATING

1. e⁺e⁻ colliders in the charmonium region

Very clean! Can only run at one energy at a time.

The Future – BES III (running on the $\Psi(2S)$ as we speak)

2. e⁺e⁻ in the bottomium energy range

BELLE 1998-date

BaBar 1998-2008

Clean environment – several different ways of studying charm

- a) Continuum
- b) B-decays to charm
- c) ISR to scan the charmonium resonances

3. Hadron colliders

Huge cross section for charm – but complicated environment. Physics can be done because of the kinematically clean decays of D^{*+} and J/ψ

The Future: LHC-b, and maybe CMS and ATLAS. Huge production rates, but only LHC-b designed with a view specifically B and thus c physics.

Search for New Physics (NP) in Charm Sector

Very low SM rates $(BF(c \rightarrow ull) \sim 10^{-8})$ for loop processes provide unique window to observe NP in rare charm processes

Rare Decays, D^0 - D^0 oscillations & CP Violation

NP can introduce new particles into loop

Particles and couplings in rare charm processes are NOT the same as in rare B and K processes

Rare Charm Decay Rates Modified by NP

- Radiative D \rightarrow (γ , ϕ ,K*) γ SM 10⁻⁴ -10⁻⁶
 - − CLEO D $\rightarrow \gamma \gamma$ < 2.6 x 10⁻⁵ @90% C.L.
 - BABAR D $\to \phi \gamma$ (2.73±0.30±0.36) x 10⁻⁵ (new)
 - BABAR D \to K* γ (3.22±0.20±0.27)x 10⁻⁴ (new)
- Leptonic D→μμ SM<10⁻¹³ RPV SUSY~10⁻⁷
 - CDF < $4.3x10^{-7}$ @90% C.L. (new)
- GIM Suppressed D→πII SM~10⁻⁶
 - Distinguish NP from SM with dilepton invariant mass, FB asymmetries
 - D0 D $\to \pi \mu \mu < 3.9 \times 10^{-6}$
 - CLEO-c D $\to \pi ee < 4.7 \times 10^{-6}$
- Lepton Flavor Violation BABAR @90% C.L.
 - $D \rightarrow e^{+}\mu^{-} < 8.1x10^{-7} D^{+} \rightarrow K^{+}e^{-}\mu^{+} < 3.7x10^{-6}$
 - $D_s^+ \rightarrow K^+ e^- \mu^+ < 3.6 \times 10^{-6} \Lambda_c^+ \rightarrow pe^- \mu^+ < 7.5 \times 10^{-6}$
- Lepton Number Violation D⁺ $\rightarrow \pi^-e^+e^+$
 - CLEO-c < 3.6 x 10⁻⁶ @90% C.L

Radiative D decays

- Radiative D→(φ,K*)γ SM 10⁻⁴-10⁻⁶
 - − BABAR D→ $\phi\gamma$ (2.73±0.30±0.36) x 10⁻⁵ (new at ICHEP)
 - BABAR D→K*γ (3.22±0.20±0.27)x 10⁻⁴ (new at ICHEP)

SLAC-PUB-13352, hep-ex/arXiv:0808:1838

Though interesting, these observations do not indicate new physics, they indicate final state interactions.

Purely Leptonic Decay D→μμ

No evidence of a signal $D \rightarrow \mu\mu < 4.3 \times 10^{-7} @90\% C.L.$

SM<10⁻¹³ RPV SUSY~10⁻⁷

This gives constraints on R-parity violating SUSY models

CDF Public Note 9226

D^0 - \overline{D}^0 Mixing

Short-distance

Two state system: $|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$ Mass Eigenstates \neq Flavor Eigenstates

D^0 – \overline{D}^0 transitions observables

$$x = \frac{\Delta M}{\Gamma}, \quad y = \frac{\Delta \Gamma}{2\Gamma} \quad R_M = \frac{1}{2}(x^2 + y^2)$$

$$x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}$$

$$y' = y \cos \delta_{K\pi} - x \sin \delta_{K\pi}$$

$$\left| \frac{q}{p} \right| \qquad Arg\left(\frac{q}{p}\right)$$

SM calculations based on box diagrams alone gives x~10⁻⁵, y~10⁻⁷ [Falk et al. PRD 65 (2002) 054034]

Long distance effects dominate x, y
Any CPV in this system would be clear
evidence for New Physics

Long-distance

New-physics

Supersymmetry:

Extended Higgs:

D^0 - \overline{D}^0 Mixing:

- 'Wrong sign' K^(*)ev (R_M)
 BELLE PRD 77 (2008) 112003
 BaBar PRD 76 (2007) 014018
- 'Wrong sign' Kπ (x'², y')
 BELLE PRL 96 (2006) 151801
 BaBar PRL 98 (2007) 211802 ←
 CDF PRL 100 (2008) 121802 ←
- Eigenstate lifetime analyses:

Y_{CP} BaBar PRD 78 (2008) 011105 ← BELLE PRL 98 (2007) 211803 ← C

- K_Sπ⁺π⁻ Dalitz analyses: x,y
 BELLE PRL 99 (2007) 131803
- Quantum Correlation: $\delta_{K\pi}$ CLEO-c PRL 100 (2008) 221801

New 2008 (unpublished)

BABAR: 'wrong-sign' $D^0 \rightarrow K^+\pi^-\pi^0$ arXiV:0807.4544 Finds: $x' = 2.61 + 0.68 \pm 0.39$

Belle: $y_{CP} D^0 \rightarrow K_S K^+ K^-$ (Preiminary ICHEP. No significant mixing found in this CP- mode.)

HFAG Average for ICHEP08

http://www.slac.stanford.edu/xorg/hfag/charm/index.html

D^0 - \overline{D}^0 Mixing:

MIXING HAPPENS! Why? Could be long range interactions, but could be NP ₁₁ (Extra fermions, guage bosons, scalars, dimensions, symmetries etc.)

Direct CPV

In Singly Cabibbo Suppressed decays, interference between penguin & tree can generate direct CP asymmetries which:

- Could reach ~10⁻³ in SM may be observable!
- In NP models effects of ~10⁻² possible (Grossman, Kagan, Nir, PRD 75 (2007) 036008)

CPV searches in $D^0 \rightarrow KK$ (or $\pi\pi$)

Measure asymmetry in time integrated rates:

$$A_{CP} = \frac{\Gamma(D^0 \to KK) - \Gamma(\overline{D}^0 \to KK)}{\Gamma(D^0 \to KK) + \Gamma(\overline{D}^0 \to KK)}$$

Distinguish D flavor from 'slow pion' charge in $D^* \rightarrow D^0 \pi$

BaBar, PRD 100 (2008) 061803

386 fb⁻¹, ~130k KK events

Also, limits in *multi*-hadron decays from BaBar and CLEO-c!

BaBar A(KK)_{CP} = $[0.00 \pm 0.34 \text{ (stat)} \pm 0.13 \text{ (syst)}]\%$

Belle $A(KK)_{CP} = [-0.43 \pm 0.30 \text{ (stat)} \pm 0.11 \text{ (syst)}]\%$

Entering interesting territory!

Leptonic D Decays and Decay Constants

In D⁺ and D_s c and spectator quark can annihilate to produce leptonic final state:

In general, for all pseudoscalars:

$$\Gamma(\mathbf{P}^{+} \to \ell^{+} \nu) = \frac{1}{8\pi} G_{F}^{2} f_{P}^{2} m_{\ell}^{2} M_{P} \left(1 - \frac{m_{\ell}^{2}}{M_{P}^{2}} \right)^{2} |V_{Qq}|^{2}$$

Since V_{cd} and V_{cs} well known, can extract f_D and f_{D_s} and compare with lattice !

Measurements of D_(s)→Iv Branching Fractions Precise measurements now exist for:

```
& BaBar (Phys.Rev.Lett.98:141801,2007 hep-ex/0607094) \tau^+ \rightarrow (e^+ vv)v CLEO-c (PRL 100 (2008) 161801)
```

- $\mu^+ \nu$ CLEO-c (Phys. Rev. D 78, 052003, 2008) Basic methods for $\mu\nu$ measurement:
 - CLEO-c: for f_D reconstruct one D^+ , look for MIP (μ), and then compute missing mass squared (similar for f_{Ds}, but here exploit D_sD_s* production in 4170 MeV dataset)
 - Belle: infer presence of D_s from recoiling mass against reconstructed D & fragmentation. Add candidate μ and compute missing mass
 - BaBar: Select e+e- → cc events with high momentum D⁰, D⁺, D_s, D*+ close to B kinematic end-point. Search for $D_s^* \rightarrow \gamma$, $D_s \rightarrow \gamma \mu \nu$ in the recoil

CLEO-c D⁺ $\rightarrow \mu^+ \nu$

Missing mass squared distribution (including log zoom with fit):

BR(D⁺
$$\rightarrow \mu^+ \nu$$
) = (3.82 ± 0.32 ± 0.09) x 10⁻⁴
 f_D = (205.8 ± 8.5 ± 2.5) MeV

(result with $\tau v/\mu v$ fixed at SM expectation)

D⁺ and D_s Decay Constants

Belle 0709.1340 [hep-ex] PRL 100:241801 (2008)

BABAR PRL 98, 141801 (2007)

CLEO-c 0806.2112 subm to PRD PRL 100, 161801 (2008) PRL 99, 071802 (2007)

HPQCD HISQ u,d,s sea PRL 100, 062002 (2008)

FNAL/MILC u,d,s sea LAT08 prelim.

ETMC u,d sea LAT08 prelim.

no s in sea as yet

Final D_s results from CLEO-c expected soon with full data sample

Current CLEO results use 70% of data for $D_s \rightarrow \mu \nu + D_s \rightarrow \tau \nu$, $\tau \rightarrow \pi \nu \nu$ and use 50% of data for $D_s \rightarrow \tau \nu$, $\tau \rightarrow e \nu \nu$

$D_s \rightarrow p\overline{n}$: First Observation

PRL 100, 181802 (2008)

- Same analysis technique as D→μν
- Only kinematically allowed
 D meson baryonic decay
- Consequence for understanding W annihilation dynamics

Neutron mass Events/4 MeV 0.75 0.85 0.95 1.05 Missing Mass (GeV)

$$\mathcal{B}(D_s^+ \to p\bar{n}) = (1.30 \pm 0.36^{+0.12}_{-0.10}) \times 10^{-3}$$

Spectroscopy of the XYZ charmonium-like states

It all started with BELLE 5 years ago, finding the X(3872) resonance in $B\to XK\to (J/\Psi\pi\pi)K$. This particle since confirmed by BaBar, D0, and CDF

	M(X(3872)), MeV/c ²
B→XK	3871.46±0.37±0.07
X →J/ψπ+π-	3871.61±0.16±0.19
PDG07	3871.4±0.6
$M(D^0)+M(D^{*0})$	3871.81±0.35

Possible explanations:

Unlikely to be conventional charmonium Tetraquark

Hybrid

Threshold Cusp

D⁰D*⁰ molecular state?

CDF most accurate mass measurement

X(3872) Radiative Decays

Observation of radiative decays $X \rightarrow J/\psi \gamma$ and $X \rightarrow \psi(2S)\gamma$ at these levels disfavor a D^0D^{*0} molecular state identification.

Question: is the peak in D^0D^* and $D^0D^0\pi^0$ the same particle? Answer: probably yes.

BABAR preliminary	•
Signal Events $(2 \text{ MeV}(2S))$ $(2 \text{ MeV}(2S))$	3.85 3.9 3.95
	$m_{\psi(2S)\gamma} (GeV/c^2)$

State	$\mathbf{M}, \ \mathrm{MeV/c^2}$	$\Gamma_{ m tot},{ m MeV}$	Decay Modes
X(3875)	$3875.2 \pm 0.7^{+0.9}_{-1.8}$	$1.22 \pm 0.31^{+0.23}_{-0.30}$	$\mathbf{D}^0\overline{\mathbf{D}}{}^0\pi^0$
X(3872)	$3872.6^{+0.5}_{-0.4} \pm 0.4$	$3.9^{+2.5}_{-1.3}{}^{+0.5}_{-0.3}$	$\mathrm{D}^0\overline{\mathrm{D}}{}^{*0}$
X(3875)	$3875.1^{+0.7}_{-0.5} \pm 0.5$	$3.0^{+1.9}_{-1.4}\pm0.9$	$\mathrm{D}^0\overline{\mathrm{D}}{}^{*0}$
X(3872)	3871.81±.22	< 2.3	$\pi^+\pi^-\mathrm{J}/\psi$ CDF
			etc.

New peak found in $e^+e^-{\to}\Lambda_c^{+}\Lambda_c^{-}\gamma_{ISR}$

Named the X(4630). Interpretation?

Is it the same as the Y(4660) found by BELLE in $e^+e^-{\rightarrow}\psi(2S)$ $\pi^+\pi^ \gamma_{ISR}$?

$X(4630) = Y(4660)$? $J^{PC}=1$					
State	$\mathbf{M}, \ \mathrm{MeV/c^2}$	$\Gamma_{ m tot},~{ m MeV}$			
X (4630)	4634_{-7-8}^{+8+5}	92^{+40+10}_{-24-21}			
$\mathbf{Y}(4660)$	$oxed{4664\pm11\pm5}$	$\boxed{48\pm15\pm3}$			

Z(4430)⁺ first report of a charged

charmonium like state

$$\begin{array}{l} B \rightarrow KZ,\, Z(4430)^+ \rightarrow \pi^+ \psi(2S) \\ K = K^-, K^0_s \ ; \ \psi(2S) \rightarrow \ell^+ \ell^-, \, \pi^+ \pi^- J/\psi \end{array}$$

Interpretations: S –wave D*D₁ threshold PRL 100, 142001 (2008)

effect

D***D**₁ molecular state Radially excited tetraquark **Baryonium state**

Hadro-charmonium

 $M(\pi^+\psi(2S))$

BF(B \to KZ)xBF(Z \to ψ (2S) π) = (4.1 \pm 1.0 \pm 1.3) 10⁻⁵

BUT...

Results are not confirmed by BaBar .Extensive study $B^{-0} \rightarrow \psi \pi^- K^{0+}$ making sure to include all reflections. Find no significant peaks and place limits on the "BELLE" peak.

Decay mode	Z(4430) ⁻ signal	Branching fraction (x10 ⁻⁵)	Upper limit (x10 ⁻⁵) (@95% C.L.)
B ⁻ →Z ⁻ K ⁰ , Z ⁻ →J/ψπ ⁻	-16 ± 140	-0.1 ± 0.8	<1.5
B ⁰ →Z ⁻ K ⁺ , Z ⁻ →J/ψπ ⁻	-666 ± 203	-1.2 ± 0.4	<0.4
B ⁻ →Z ⁻ K ⁰ , Z ⁻ →ψ(2S)π ⁻	110 ± 118	1.3 ± 1.4	<3.8
B ⁰ →Z ⁻ K ⁺ , Z ⁻ →ψ(2S)π ⁻	327 ± 170	1.4 ± 0.7	<2.6

2σ peak! Not significant

BF(B \to KZ)xBF(Z \to ψ (2S) π) = (4.1 \pm 1.0 \pm 1.3) 10⁻⁵

$$Z^+_{1,2} \rightarrow \chi_{c1} \pi^+$$

 $B^0 \rightarrow \chi_{c1} \pi^+ K^-; \quad \chi_{c1} \rightarrow J/\psi \gamma$

Dalitz analysis : fit $B^0 \rightarrow \chi_{c1} \pi^+ K^-$ amplitude by coherent sum of contributions from:

known $K\pi$ resonances

$$K^*$$
's + one $(\chi_{c1}\pi)$ resonance

$$K^*$$
's + two $(\chi_{c1}\pi)$ resonances

PRELIMINARY and UNCONFIRMED

 M_1 =(4051±14⁺²⁰₋₄₁) MeV/c² Γ_1 =(82⁺²¹₋₁₇⁺⁴⁷₋₂₂) MeV M_2 =(4248⁺⁴⁴₋₂₉+¹⁸⁰₋₃₅) MeV/c² Γ_1 =(177⁺⁵⁴₋₃₉⁺³¹⁶₋₆₁) MeV

$$\mathcal{B}(\overline{B}^{0} \to K^{-}Z_{1}^{+}) \times \mathcal{B}(Z_{1}^{+} \to \pi^{+}\chi_{c1}) =$$

$$(3.1_{-0.9-1.7}^{+1.5+3.7}) \times 10^{-5},$$

$$\mathcal{B}(\overline{B}^{0} \to K^{-}Z_{2}^{+}) \times \mathcal{B}(Z_{2}^{+} \to \pi^{+}\chi_{c1}) =$$

$$(4.0_{-0.9-0.5}^{+2.3+19.7}) \times 10^{-5}.$$

Summary & Outlook

Rare Charm Decays: Experiments entering interesting territory - expect

more results soon from CLEO/BES, B-factories and Tevatron that provide constraints on New Physics.

Charm Mixing: Discovery of D⁰-D⁰ oscillation points the way forward

to searches for CPV and New Physics

CP Violation: None found, but experiments entering interesting

territory

Growing disagreement between experiment and lattice

calculations: sign of new physics?

More new questions than answers. Is our view of all

hadrons being qq or qqq incorrect?

Future: Tighter constraints on New Physics, more stringent

tests of LQCD, more precise input to B-physics

expected soon from CLEO, B-factories & Tevatron.
In the near future charm results from BESIII & LHCb.

Higher luminosity B factories (SuperB) will lead to

better understanding NP observed at LHC.

26

• EXTRAS

D^0 - \overline{D}^0 Mixing:

New HFAG Average for ICHEP08

http://www.slac.stanford.edu/xorg/hfag/charm/index.html

 $\mathbf{y_{CP}}(\%)$

Previous measurements all from $D^0 \rightarrow KK, \pi\pi$ (CP+)

New Belle result uses Dalitz plot analysis of $D^0 \rightarrow K_S K^+ K^-$, dominated by $D^0 \rightarrow K_S \phi$ (CP-) arXiv:0808.0074

CPV Searches in Multibody (n≥3) Decays

BaBar & Belle study of D $^0 \to K^+K^-\pi^0, \pi^+\pi^-\pi^0$ CLEO study of D $^+ \to K^+K^-\pi^+$

Several complementary analyses:

O(%) Look for phase space integrated asymmetry.

Sensitivity

Increased

- Form residuals of D⁰, D⁰ w.r.t. mean in Dalitz space
- Look for difference in angular moments of D⁰ & D⁰ distributions
- $O(\infty)$ Compare amplitude fits of D^0 & \overline{D}^0 Dalitz plot (model dependent)

No CPV observed

BABAR 385 fb⁻¹, arXiv:0802.4035

CLEO 818 pb⁻¹, arXiv:0807.4545

