CLEO Analysis and Computing Model

Dan Riley, Cornell University
2009-01-26
The CLEO Detector

Data collection ended April 1, 2008.

Dan Riley, Data Preservation Workshop, 2009-01-26
CLEO: Historical & Completion

Historical:
- CLEO I, II, II.V, III: Υ; CLEO-c: ψ
- Nearly 500 Publications (~100 CLEO-c publications)
- Peak of 8 active physics topic working groups (with little overlap)
- Typically over 50 active analyses

Completion:
- 20 publications expected in 2009
- 3 active physics topic working groups
 - D Hadronic, Leptonic and Semi-Leptonic, Charmonium
- 30-40 active analyses
Data Storage

Event Size
- ~20 kB/event raw data
- < 10 kB/event analysis data

Integrated Size
- > 80 TB raw data
- ~40 TB CLEO III and CLEO-c analyzed data + Monte Carlo
- Accessed via network file system
 - xrootd is supported, but never widely deployed

Production
- Reconstruction at Cornell
- Monte Carlo production offsite (principally U. Minnesota for CLEO-c)
Unified Data Model

A **Record** holds all data that are related by lifetime
e.g., the Event Record holds Raw Data, Tracks, Showers, etc.

A **Stream** is a time-ordered sequence of Records

A **Frame** is a collection of Records describing the state of the
detector at an instant in time

All data are accessed via a common type-safe interface to the Frame
Uniform Access Methods

Common access methods for Frame objects
- Common C++ software framework using dynamically loaded plugins
- Frame access is independent of data source, data file format, etc.
- “One thing to learn”

```cpp
FAItem< DBEventHeader > eventHeader;
extract( iFrame.record( Stream::kEvent ), eventHeader );
```

Levels of Abstractions
- Data partitioned into “hot”, “warm” and “cold” data stores
 - In practice only “hot” store used for most analyses
- Hot store includes 4-vectors, showers, a subset of full helices, showers, particle ID probabilities, cluster-track matches, etc.
- Warm and Cold store include the rest of the track helices (less used particle hypotheses), data used in detector diagnostics
EventStore Grades

CLEO-c EventStore System

- Specify “grade” and start date of an analysis
 - e.g., “eventstore in 20040501 physics”.
- Full reproducibility (unless data are lost)
- Data format independent (in principle)
- Adding some CLEO III data
 - Converting from Objectivity object database to CLEO-c “PDS” format

EventStore grades support the data analysis lifecycle

- raw data: “daqraw”
- Data quality monitoring: “daqraw” → “raw”
 - Histograms, ntuples made for calibrations
- Reconstruction (“pass2”): “raw” → “pass2”
- Post-reconstruction calibrations: “pass2” → “physics”
 - Post-reconstruction corrections are written to EventStore and thus frozen; analysis jobs do not need access to calibrations and conditions.
EventStore Sizes

“Collaboration”, “Group” and “Personal” EventStores

- Designed as a hierarchical federation
- Data can be exported from a Collaboration or Group EventStore to a Personal EventStore
 - and vice versa
- Personal EventStore can be used to create a standalone analysis environment
 - Interface is a subset of the production system
 - Designed to handle subsets of the data

Simple to repackage CLEO data for redistribution!
Monte Carlo

Generators
- qq, EvtGen, etc.

Simulation
- GEANT3 based

Calibrations and Conditions
- Required for Monte Carlo production
- Stored in Objectivity database accessed via CORBA
- Uses standard format-independent Frame interface
 - CORBA plugin could be replaced via flat files or local SQLite database
Data Preservation Prospect

What CLEO data are worth preserving?
- Υ data mostly superseded by B factories
- ψ should be superseded by BES III

Level of data preservation
- Raw data requires too much infrastructure
- Analysis level could be CLEO analysis objects or ROOT 4-vectors
 - Hybrid format with CLEO analysis objects directly accessible in ROOT technically difficult
- Precision measurements require accurate simulations, understanding of systematics

No funding model for data preservation!