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Abstract

Lattice functions derived from betatron phase-advance
measurements have been used successfully at many e+–e−

facilities in the world, including at the PEP-II High Energy
Ring. For the Low energy Ring of PEP-II, however, extrac-
tion of meaningful beta functions is hampered by the90◦

phase advance/cell in the arcs, which causes a singularity in
the expressions for beta. An algorithm has been developed
calculating beta functions based onβ andα at the begin-
ning of an arc and tracking the Twiss parameters through
the arc while matching the observed phase advance/cell.
Stability of the algorithm is improved by doing the same
calculation “backward” as well as forward and averaging
the result. The algorithm allows estimating beta functions
at bad BPMs in many cases. The paper presents the algo-
rithm used as well as examples of use in PEP.

1 INTRODUCTION

The ability to measure the envelope (β−) functions in the
High Energy Ring (HER) of PEP-II has been an important
diagnostic during beam commissioning and machine oper-
ation and tuning. Beating of theβ functions has been iden-
tified and corrected successfully using this diagnostic. The
method uses betatron phase-advance measurements taken
using the single-turn capability of the PEP BPM system[1],
exciting the horizontal or vertical eigenmode of the beam
using the tune-measurement facility.[2] The HER has60◦

phase advance/cell through most of its sections andaccu-
rate results are obtained with a typical oscillation amplitude
of 0.5 . . .1 mm. The data analysis follows closely the for-
mulae used at CERN.[3].

The same diagnostics exist for the Low Energy Ring
(LER), except that the LER has90◦ cells in the arcs and
therefore the evaluation of theβ functions fails, not sur-
prisingly. Limited information can still be gained from just
comparing the measured and the model phase advance, but
this is non-intuitive and in practice of limited value.

We have therefore developed an algorithm that will cal-
culate meaningfulβ functions throughout the LER arcs
based on theβ andα functions measured in the straight
sections (where the phase advance/cellµ 6= 90◦) and the
measured phase advance throughout the arcs. Implicit in
this algorithm is the assumption that the lattice optics is
“locally correct”. One could, of course, use the BPM am-
plitudes to derive the beta functions but the amplitudes de-
pend on the calibration of the BPMs to be correct, which
is not necessarily true. We rather use the BPM amplitudes
as a cross check for consistency, on the assumption that

∗Supported by DOE under contract DE-AC03-76SF00515

the BPM calibrations within the arc sections are closely
matched since they are identical units in identical chamber
cross sections, although they may have an overall error and
may deviate from section to section.

2 BEAM OPTICS

2.1 Non-90◦/cell optics

The transfer through a ring section is given by the TRANS-
PORT matrixMdescribes the optical structure of the ma-
chine.M can be expressed in terms of the (design-) lattice
functions:

M =
(
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)
= √
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where the indices 1 and 2 refer to the beginning and the
end of the section described byM . µ12 is the betatron
phase advance from point 1 to point 2. Note that the Twiss
functionsβ andα are not assumed to be at their matched
values. We can write down the phase advanceµ expressed
in terms of the lattice functions at location 1 only:

tanµ12 =
m12

β1m11 − α1m12
. (2)

In a measurement scenario we now takeµ from betatron-
phase measurements. SinceM = (mij) is known (the ma-
chine model presumably correctly describing the machine
lattice) we can expressβ andα in terms of the measured
phase advanceµm. If we have two independent measure-
ments, sayµ12,m andµ23,m we can write two equations
like (2), one for each section:

tanµ23 =
n12

β2n11 − α2n12
, (3)

tanµ12 =
−m∗12

β2m
∗
11 − α2m

∗
12

, (4)

wherem∗ij is elementij of the inverse matrixM−1
12 , i.e. of

M21. M21 is found fromM12 using Eq. (1) by exchanging
β1, α1 with β2, α2 andµ12 by µ21 = −µ12. nij are the
elements ofM23.

The (model–) phasesµ12 andµ23 can be replaced by the
measured phasesµ12,m andµ23,m and we can solve the



resulting two equations forβ2 andα2:
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and, thus,
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and
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Using Eq. (1) we find the matrix elements in terms of the
model-Twiss parameters:

n11

n12
=

1
β2

(cotµ23 + α2) , (9)
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m∗12

=
−1
β2
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and get finally

β2,m =
cot µ23,m + cotµ12,m

cotµ23 + cotµ12
β2, (11)

and

α2,m =
cotµ23,m + cot µ12,m

cot µ23 + cot µ12
α2 (12)

−cotµ23,m cotµ12 − cotµ12,m cotµ23

cotµ12 + cotµ23
.

This, of course, is what was worked out at CERN by
P. Castro-Garcia to measure the lattice functions in LEP[3]
and what is also used at CESR and at the PEP-II High En-
ergy Ring (HER), although it is written here for the specific
case calculatingβ, α at the middle one of three BPMs, see
Fig. 1. It works quite well as long as the phase advancesµ
between BPMs are suitable.

Figure 1: Location of BPM phase measurements
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3 β FUNCTIONS IN 90� SECTIONS

Problems arise when the denominator in the above equa-
tions becomes zero. This happens whenµ, the model phase
advance/BPM for the section, is(2n+1)π/2, but also when
|µ12 + µ23| is nπ (n = 0, 1, . . .). In fact, similar prob-
lems arise in all regions where the phase advances between
BPMs 1 and 3 are too close to0 or π, e.g. the interaction
region. We empirically set the following criterion:

|µ12 + µ23| ≥ 0.1, and |µ12 + µ23 − π| ≥ 0.1 (13)

for BPM #2 to be at a phase unsuitable for applying
Eqs. (11) and (12). In the practical implementation, the
threshold phase difference (0.1 radians) is implemented as
a user-changeable constant.

For a short section with the above condition (1 pair of
cells, say), the problem can be circumvented by switching
to a different set of BPMs. This approach is taken success-
fully in the IR of the HER.[4] to reduce the scatter on the
measuredβ functions. In extended regions the approach
breaks down due to lack of BPMs at suitable phases.

The phase measurements in these90◦ sections are valid
and, under the assumption of locally correct modelling as
above, we can propagate the Twiss function values found in
the sections with non-π/2 phase advance through the arcs
for the LER, using the measured phase advances. This is
done by observing that them12 matrix element relatesβ
and the phase advanceµ:

m12 =
√
β1β2 sinµ12 =

√
β1,mβ2,m sinµ12,m, (14)

and therefore

β2,m =
β1

β1,m

sin2 µ12

sin2 µ12,m

β2 (15)

at the next BPM(#2) is determined by the measurement
at location 1. We solve Eq. (6) forα2,m and get

α2,m = cotµ12,m + β2,m
m∗11

m∗12

= cotµ12,m −
β2,m

β2
(cotµ12 − α2). (16)

Since we measureβ andα at BPM #1, the phase ad-
vance to BPM#2 is not really needed but can be derived
from the measurements at location 1 as well. We rewrite
Eq. (2) for the transformation from loc. 2 backwards to loc.
1 in terms of the measured Twiss parameters at location 1:

tanµ12,m =
m12

β1,mm11 − α1,mm12
(17)

from which we can calculate the phase advance

µ12,m = arccot
(
β1,m

β1
(cotµ12 + α1) − α1,m

)
(18)

and thus we knowβ2,m as well. This is useful in the PEP-II
context since most BPMs in the PEP rings are single-view,
eitherx or y, only.



Figure 2: Forward and backward tracking calculation ofβx for the LER
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Figure 3: Average measuredβx (top) and normalized amplitude (bottom)
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4 FORWARD & BACKWARD
CALCULATION

With these added expressions we can calculate lattice func-
tions at every location in the ring, regardless of phase ad-
vance. In fact, this can be done in either direction, beam-
following (forward) as well as backward. The two solu-
tions do not necessarily agree due to noise and other er-
rors in the measurements. Straight-forward averaging of
the two solutions should reduce the error, but in practise
one is often faced with a “good” solution and a “bad” one
spoiled due to a bad reading, it being not obvious which
one is “good.” We get around this to a certain extent by
weighting the two solutions in the averaging by the devia-
tion of the amplitude normalized toβm from 1.

The overall averaged normalized amplitude is calculated
by

Anorm =

∑
BPMs

Ai√
βi
pi∑

BPMs pi
, (19)

where theβi are the model values. The weights are then

pi =
1

(ai/
√
βi,m −Anorm)2

(20)

In cases where the amplitude is not available (bad BPM
or BPM reading only in the other plane) the straight aver-
age is taken. There may be some cases where theβ values
calculated in either forward or backward direction are not
meaningful (e.g.negative due to an error in BPM phase) in
which case only the valid reading is used.

5 MEASUREMENTS

The above algorithm was programmed inMathPad[5] and
run on a number of previously saved data sets. Fig. 2 shows
the comparison of forward and backward tracking of the
lattice functions through the LER lattice. While in good
general agreement the calculated lattice functions deviate
from each other to a degree in certain regions. In Fig. 3 the
weighted average is shown on the top, on the bottom the
quantityAnorm,i is shown for the average. Good consis-
tency is obtained throughout the whole lattice, with some
deviations in region 2, the interaction region where the lo-
cal solenoid compensation introduces non-negligible cou-
pling. This provides confidence in the derivedβ functions
as well as the gain-calibration of the BPMs.

The β beating apparent in the example was observed
when the working point in the LER was moved to 0.53 in



Figure 4:βx in the LER atνx ≈ 0.63.
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Figure 5: Measured LERβx and design model with initial conditions adjusted to fit the measurements between 10 and
300 m.
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x. At its usual working point (≈ 0.63), the lattice is much
less sensitive to focusing errors and the lattice functions are
in fact quite regular, as shown in Fig. 4. In both figures iso-
lated extrema inβ (“spikes”) are visible. These have been
traced back to faulty BPMs.

6 COMPARISON WITH THE LATTICE
MODEL

Since the model-lattice functions simply encode the opti-
cal properties of the lattice, one can use them to “track”
initial Twiss-parameter values through the machine model.
Varying the initial values ofα andβ one can fit the model
values of a region to the measured values and then propa-
gate through the remainder of the lattice, thus possibly lo-
calizing points where the optics deviates from the intended
behavior. The result, using the design-lattice model of the
LER, is shown in Fig. 5. Deviations are developing at the
tune section (phase trombones) and across the interaction
region. The phase trombones are set to different values in
the machine, therefore deviations are not surprising. In the
interaction region these measurements have lead to the un-
covering of an inconsistency between the magnet settings
and the model, which is still being analyzed.

7 FURTHER DEVELOPMENT

The present algorithm, while already being instrumental
in shaking down theβ beating in the LER, can be further
enhanced. Work is underway to implement the algorithm
online.[4] Work is also underway to include correct treat-
ment of measurement uncertainties and make the algorithm
more robust against erroneous BPM readings. A more fun-
damental extension will include the determination of ele-
ments of the coupling matrixC, the information for which
is present in the acquired data as the response of the off-
plane BPMs is also recorded.
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