Linear Lattices: Diagnostics & Correction

DAVID SAGAN JULY 5, 2001

OUTLINE

- Linear Lattice Overview
- Measurement Techniques
- CESR Measurement System
- Correcting the Lattice
- Locating Quadrupole Errors
- Locating Coupling Errors
- Conclusion

THANKS

- John Dobbins
 - Don Hartill
- Raphael Littauer
 - Bob Meller
 - Mark Palmer
 - Dave Rubin
 - John Sikora
- Charlie Strohman

LINEAR LATTICE OVERVIEW

 Normal mode Analysis: Start with the 4 × 4, 1-turn matrix T₁ which maps the transverse coordinates

$$\mathbf{x} = (x, x', y, y') .$$

T₁ is written in normal mode form using a similarity transformation:

$$\mathbf{T}_1 = \mathbf{V} \mathbf{U} \mathbf{V}^{-1},$$

where the normal mode matrix U is

$$\mathbf{U} = \begin{pmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{B} \end{pmatrix},$$

with A and B of the form

$$\mathbf{A} = \begin{pmatrix} \cos \theta_a + \alpha_a \sin \theta_a & \beta_a \sin \theta_a \\ -\gamma_a \sin \theta_a & \cos \theta_a - \alpha_a \sin \theta_a \end{pmatrix},$$

V is of the form (a la Edwards & Teng)

$$V = \begin{pmatrix} \gamma I & C \\ -C^+ & \gamma I \end{pmatrix}$$
,

with

$$\gamma^2 + ||\overline{\mathbf{C}}|| = 1$$

Note:

$$C = 0 \implies Local motion is decoupled$$

The magnitude of C(s) is a measure of the local coupling.

 \bullet Generally the normalized matrix $\overline{\mathbf{C}}$ is used instead of \mathbf{C}

$$\overline{\mathbf{C}} \equiv \mathbf{G}_a \, \mathbf{C} \, \mathbf{G}_b^{-1}$$
.

where

$$\mathbf{G}_{a} = \begin{pmatrix} \frac{1}{\sqrt{\beta_{a}}} & 0\\ \frac{\alpha_{a}}{\sqrt{\beta_{a}}} & \sqrt{\beta_{a}} \end{pmatrix}.$$

Note:

$$\overline{C}_{ij} \sim \frac{1}{\sqrt{2}} \implies \text{fully coupled}$$

• For example: With the a mode excited, and assuming weak coupling ($\gamma \simeq 1$), the motion looks like:

Here \overline{C}_{22} gives the in–phase component of the y–motion relative to the x–motion and \overline{C}_{12} gives the out–of–phase component.

For b mode excitation: \overline{C}_{11} gives the in-phase component of the x-motion relative to the y-motion and \overline{C}_{12} gives the out-of-phase component.

• To fully characterize the linear lattice need:

$$\beta_a$$
, β_b , α_a , α_b , ϕ_a , ϕ_b , $\overline{\mathbf{C}}$.

MEASUREMENT TECHNIQUES

- Possible Techniques for measuring the Lattice Functions:
 - Vary the strength of a quadrupole, look at the tune changes.
 - Vary orbit bumps, measure the orbit "cross talk".
 - Ping the beam, make a turn-by-turn orbit measurement at the BPM's.
 - Shake the beam at a betatron frequency, Look at the BPM response.

LATTICE MEASUREMENT VIA VARYING QUADRUPOLE STRENGTHS

 Idea: Vary the strength of a quadrupole and monitor the tune change. β is computed via:

$$\delta Q_{h,v} = rac{eta_{h,v}}{4 \pi} \, \delta k \, l$$

- Problems:
 - Hysteresis will degrade the accuracy.
 - Can loose the beam during the measurement process.
 - Intrinsically slow: The quadrupole skew rate limits the measurement speed.
 - Coupling not measured or taken into account.

LATTICE MEASUREMENT VIA ORBIT BUMPS

 Idea: Vary orbit bumps in one plane and look at the resulting orbit in the other plane. This gives information about skew quadrupoles within the bump.

- Advantages:
 - Can be done without any additional hardware.
- Disadvantages:
 - Somewhat slow: Limited by steering magnet slew rates.
 - Does not give the lattice functions.

LATTICE MEASUREMENT VIA PINGING THE BEAM

 Idea: Ping the beam and record turn-by-turn orbit data at each BPM. Fit the data to a damped sinusoid:

$$x_j(n) \simeq A \sqrt{\beta_a(j)} \cos(2\pi Q_a n + \phi_a(j)) e^{-n/\tau}$$

- Advantages:
 - Possible to gather data quickly.
- Disadvantages:
 - The coupling analysis is not clean (motion at a BPM depends things other than the local \(\overline{\mathbb{C}}\).)
 - Decoherence and damping limit the accuracy.
 - Needs dedicated BPM electronics.

LATTICE MEASUREMENT VIA SHAKING THE BEAM

 Idea: Shake the beam at a betatron sideband and observe the beam motion at the BPM's

- Advantages:
 - Gives the lattice functions including the coupling.
 - Possible to gather data quickly.
 - Decoherence and damping do not limit the accuracy.
- Disadvantages:
 - Needs dedicated BPM electronics.

Present CESR Measurement system

Schematic of the present CESR measurement system:

- Operation:
 - Shaker phase locked to the beam.
 - Shake both horizontal and vertical simultaneously.
 - Analyze the signals the BPM buttons sequentially
 - Signal processor rectifies and stretches the signal.

SIGNAL ANALYZER

Input signal is digitized turn-by-turn

$$S(n), n = 1, 2, 3...$$

The phase of the reference signal at turn n is used to construct sine cosine references

$$R_{\sin}(n) = \sin \phi_{ref}(n)$$

 $R_{\cos}(n) = \cos \phi_{ref}(n)$

- Digitized input signal is multiplied by the sine and cosine references and summed over N turns (~ 16k).
- Sine and cosine sums are combined to get horizontal and vertical sine and cosine sums

$$Sin_x = g (Sin_Sum_2 + Sin_Sum_4 - Sin_Sum_1 - Sin_Sum_3)$$

 $Cos_x = g (Cos_Sum_2 + Cos_Sum_4 - Cos_Sum_1 - Cos_Sum_3)$
 $Sin_y = h (Sin_Sum_3 + Sin_Sum_4 - Sin_Sum_1 - Sin_Sum_2)$
 $Cos_y = h (Cos_Sum_3 + Cos_Sum_4 - Cos_Sum_1 - Cos_Sum_2)$
where g and h are geometrical factors

Results are used to solve for the lattice functions.
 Example: for a-mode excitation:

$$x = A_a \sqrt{\beta_a} \cos(n\omega_a + \phi_a),$$

$$y = -A_a \sqrt{\beta_b} (\overline{C}_{22} \cos(n\omega_a + \phi_a) + \overline{C}_{12} \sin(n\omega_a + \phi_a)).$$

- 6. In practice assume $\beta = \beta(\text{design})$ and solve for ϕ and \overline{C}_{ij} .
- 7. Can measure:

$$[\beta_a]$$
, $[\beta_b]$, ϕ_a , ϕ_b , \overline{C}_{11} , \overline{C}_{12} , \overline{C}_{22}

 Experimentally the \(\overline{C}_{12}\) data is better than the \(\overline{C}_{11}\) data or the \(\overline{C}_{22}\) data.

Example Measurement

Resolution:

φ: 1°

 \overline{C}_{12} : 0.01

MEASUREMENT TIME

- Excite both horizontal and vertical modes simultaneously.
- Take East and West measurements simultaneously.
- Sample window: 42 msec (= $16k \times 256 \,\mu\text{sec}$).
- Single button sample time: 200 msec (dominated by relay settling time).
- Single BPM sample time: 800 msec (= 200 msec × 4).
- 100 BPM's sample time: 40 sec (= 800 msec × 50).

FUTURE MEASUREMENT SYSTEM

In the future each BPM will have its own processor.

- Each processor will measure 4 buttons simultaneously.
- Expected Measurement Time: ~ 1 sec (dominated by I/O between the processors and the main computer).

DETERMINING BETA

- Since β is not directly measured it needs to be determined from the phase data.
- Relationship between β and ϕ

$$\frac{1}{\beta} = \frac{d\phi}{ds}$$

 Generally what is wanted is the difference from the design lattice so rewrite above equation as:

$$\frac{\delta \beta}{\beta_{design}} = -\frac{d(\delta \phi)}{d\phi_{design}}$$

where

$$\delta\beta \equiv \beta_{meas} - \beta_{design}$$
$$\delta\phi \equiv \phi_{meas} - \phi_{design}$$

- This equation is valid even with coupling.
- Thus: $\delta \beta$ is obtained by differentiating $\delta \phi$.

EXAMPLE SPLINE FIT

 Idea: To do the differentiation to get β first fit the data using cubic splines. Example:

 The spline fit gives good results despite the large values of δβ/β.

ALTERNATIVE WAY OF OBTAINING BETA

- One can obtain β by using a lattice model that defines the layout of the ring and then adjusting model parameters (such as quad strengths) until the φ and C as calculated from the model matches the measured data (more on this later).
- Once the model fits the data then

$$\beta(actual) \simeq \beta(model)$$

- Advantages:
 - Can be very accurate.
- Disadvantages:
 - Can be slow: The fitting can take time and thought.

Correcting the Lattice

- Given: A measurement of C

 ₁₂ and φ.
 Question: How do you calculate changes needed for the quadrupole strengths and rotation angles to make the actual lattice correspond to the design lattice.
- Start with some model lattice defining the ring layout.
- 2. Define a Merit Function

$$\begin{split} M &= \sum_{\text{dets}} W_{\phi} \left(\phi_a(meas) - \phi_a(model) \right)^2 + \\ &= \sum_{\text{dets}} W_{\phi} \left(\phi_b(meas) - \phi_b(model) \right)^2 + \\ &= \sum_{\text{dets}} W_c \left(\overline{C}_{12}(meas) - \overline{C}_{12}(model) \right)^2 + \\ &= \sum_{\text{quads}} W_k \left(k_1(model) - k_1(calib) \right)^2 + \\ &= \sum_{\text{IRquad}} W_{\theta} \left(\theta(model) - \theta(calib) \right)^2 \end{split}$$

- 3. Vary the model k_1 's and θ 's to minimize M.
- Change the actual machine parameters by

$$\Delta k = k_1(design) - k_1(model)$$

 $\Delta \theta = \theta(design) - \theta(model)$

 Note: The last 2 terms in M are to prevent the solution from "walking" when there are degeneracies or near-degeneracies.

Correcting the Lattice

Data taken before a correction:

- Corrections are made using:
 - Quadrupole strengths (in CESR all quadrupoles have independent power supplies).
 - Interaction Region Quadrupole rotation angles.

• Data taken after a correction:

- Notice the change in scale!
- $\epsilon_a/\epsilon_b \sim 2 \langle \overline{C}_{ij}^2 \rangle$.

LOCATING A QUADRUPOLE ERROR

- Finding a quadrupole error from the data is analogous to finding steering errors from orbit data:
 - 1. Say we want to check a location for an error.
 - 2. Choose regions around the this location

Assume there are no errors in the A and B regions.
 Fit (using linear least squares) the data in these regions to "free waves"

$$\delta\phi(s) = \begin{cases} \xi_a \sin 2\phi(s) + \eta_a \cos 2\phi(s) + C_a & s \in A \\ \xi_b \sin 2\phi(s) + \eta_b \cos 2\phi(s) + C_b & s \in B \end{cases}.$$

where ξ , η , and C are fitting parameters.

 Where the free waves intersect in the space in-between the regions is a possible error location.

Example Quadrupole Analysis

Measurement taken after CESR started misbehaving:

- Analysis showed the error location to be at a particular quadrupole.
- From the goodness of fit, the uncertainty in the computed location was ±1 m.
- The quadrupole controller card was replaced and the error went away.

LOCATING A COUPLING ERROR

- Procedure is analogous to finding a quadrupole error.
- Regions A and B are chosen and the \(\overline{C}_{12}\) data in these regions is fit to the form:

$$\overline{C}_{12}(s) = \begin{cases} \tau_a \sin \phi_-(s) + \mu_a \cos \phi_-(s) + \\ \lambda_a \sin \phi_+(s) + \rho_a \cos \phi_+(s) & s \in A \\ \tau_b \sin \phi_-(s) + \mu_b \cos \phi_-(s) + \\ \lambda_b \sin \phi_+(s) + \rho_b \cos \phi_+(s) & s \in B \end{cases},$$

where τ , μ , λ and ρ are fit parameters with

$$\phi_+ \equiv \phi_a + \phi_b$$
 $\phi_- \equiv \phi_a - \phi_b$

Example Coupling Analysis

 Analysis of some data was done to locate any sources of coupling in the machine arcs:

- From the goodness of fit, the calculated uncertainty in the error location was ±2 m.
- The area around the calculated location was searched. A
 back leg winding for a steering magnet was found next to
 the beam pipe.
- The back leg winding was pulled away. Result: The local coupling error went away.
- Further analysis revealed other coupling sources and more back leg windings were found near the beam pipe.

QUADRUPOLE MAGNET CALIBRATION

How to calibrate a quadrupole or skew quadrupole:
 Vary the magnet strength and take before and after lattice measurements.

CONCLUSION

- Lattice function measurements can be done quickly and accurately by shaking the beam and looking at the response at the BPM's.
- Such lattice function measurements are an invaluable tool for machine operation.
 - Example: The present system in CESR has cut enormously the time it takes to commission a new lattice.
- The BPM electronics system needs to be designed from the start to allow for lattice function measurements.
- It is important to have BPM's in the coupling region around the IR. In practice, space constraints means you never have enough.