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| LINEAR LATTICE OVERVIEW I

e Normal mode Analysis: Start with the 4 x 4, 1-turn matrix
T, which maps the transverse coordinates

x=(z,2,9.¥).

T, is written in normal mode form using a similarity

transformation:
T,=VUV
where the normal mode matrix U is
A 0
u=(o B):
o with A and B of the form
e (cus 0, + g sin @, B, sin ﬁq1 )
—q §in 0, cosf, — a,sinf, /'’
V is of the form (a la Edwards & Teng)
I C
V= (i?* 'rI) ’
with
74Tl =1
Note:

C=0 = Local motion is decoupled
e The magnitude of C(s) is a measure of the local coupling.

g )
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e Generally the normalized matrix C is used instead of C

C=G,C G;l.
where
= 0
G, = \ZEH':
'\/g: VB
Note:

Cij ~ = fully coupled

g
V2
e For example: With the a mode excited, and assuming weak
coupling (v ~ 1), the motion looks like:

‘»\ ﬁnﬁ ﬂ\ﬂgb
T g:
x

Here C'y; gives the in-phase component of the y-motion
relative to the x-motion and C,; gives the out-of-phase
component.

For b mode excitation: C), gives the in-phase component of

the x-motion relative to the y-motion and €, gives the
out-of-phase component.

¢ To fully characterize the linear lattice need:

.H-ﬂ'! .'r‘-:’rb'l {Iﬂ! ﬂbt 'ﬁu'r ¢h: C 4

.
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| MEASUREMENT TECHNIQUES I

e Possible Techniques for measuring the Lattice
Functions:

o Vary the strength of a quadrupole, look at the tune
@ changes.
o Vary orbit bumps, measure the orbit “cross talk”.

o Ping the beam, make a turn-by-turn orbit
measurement at the BPM’s.

o Shake the beam at a betatron frequency, Look at
the BPM response.
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- LATTICE MEASUREMENT VIA
' VARYING QUADRUPOLE STRENGTHS

e [dea: Vary the strength of a quadrupole and monitor
the tune change. 3 is computed via:

- .Bh.t:
6Qno = 2 6k1

e Problems:
o Hysteresis will degrade the accuracy.

o Can loose the beam during the measurement
process.

o Intrinsically slow: The quadrupole skew rate limits
the measurement speed.

o Coupling not measured or taken into account.




CESR

LATTICE MEASUREMENT VIA
ORBIT BUMPS

—

e Idea: Vary orbit bumps in one plane and look at the
resulting orbit in the other plane. This gives
information about skew quadrupoles within the
bump.

| R ,

Skew Quad

e Advantages:

o Can be done without any additional hardware.
e Disadvantages:

o Somewhat slow: Limited by steering magnet slew
rates.

o Does not give the lattice functions.
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- LATTICE MEASUREMENT VIA

_ PINGING THE BEAM

e |dea: Ping the beam and record turn—by—turn orbit data at
each BPM. Fit the data to a damped sinusoid:

X '}
/\ /\ P i, e
\/ S S Time
y4 _

zj(n) = ABa(j) cos(2m Qan + a(s)) €™
e Advantages:
o Possible to gather data quickly.
e Disadvantages:

o The coupling analysis is not clean (motion at a
BPM depends things other than the local C.)

o Decoherence and damping limit the accuracy.
o Needs dedicated BPM electronics.
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[ LATTICE MEASUREMENT VIA
| SHAKING THE BEAM
e Idea: Shake the beam at a betatron sideband and
observe the beam motion at the BPM's

| ANANYANYZ
/\/ J \J"

i, 2. %

Vi

o

e Advantages:
o Gives the lattice functions including the coupling.
o Possible to gather data quickly.

o Decoherence and damping do not limit the
accuracy.

e Disadvantages:
o Needs dedicated BPM electronics.
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PRESENT CESR MEASUREMENT SYSTEM

e Schematic of the present CESR measurement system:

e Operation:
o Shaker phase locked to the beam.
o Shake both horizontal and vertical simultaneously.
o Analyze the signals the BPM buttons sequentially

o Signal processor rectifies and stretches the signal.
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| SIGNAL ANALYZER I

1. Input signal is digitized turn-by-turn
Sn), n=123...

2. The phase of the reference signal at turn n is used to
construct sine cosine references

Ruin{"'} = Sin ¢r¢)" [“‘}
Reos(n) = cos ¢y p(n)

3. Digitized input signal is multiplied by the sine and cosine
references and summed over N turns (~ 16k).

4. Sine and cosine sums are combined to get horizontal and
vertical sine and cosine sums

s 4
Y
I—" x
1 | 2'
Sing = ¢ (Sin_Sum; + Sin_Sum, — Sin_Sum,; — Sin_Sum;)
Cos; = g (Cos_Sumjy + Cos_Sumy — Cos_Sum; — Cos_Sumj)

Sin, = h (Sin_Sumj 4 Sin_Sumy — Sin_Sum; — Sin_Sum,)
Cosy = h (Cos_Sumj + Cos_Sum, — Cos_Sum; — Cos_Sum;)

where g and h are geometrical factors

11
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5. Results are used to solve for the lattice functions.
Example: for a-mode excitation:

T = A, Jﬂﬂ cos(nwy + dq),
y = —AuVB(Ca cos(nwe + ¢a) + Crz sin(nw, + ¢4)).

[ B el
EEEE
X

6. In practice assume 3 = (3(design) and solve for ¢ and C;;.
7. Can measure:
(B, [B), @av v Cn, Cir2, Can

e Experimentally the C,» data is better than the Cy, data or
the Cs, data.




.@ | EXAMPLE MEASUREMENT |
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.~ MEASUREMENT TIME I

e Excite both horizontal and vertical modes
simultaneously.

e Take East and West measurements simultaneously.

e Sample window: 42 msec (= 16k x 256 usec).

e Single button sample time: 200 msec (dominated by
relay settling time).

e Single BPM sample time: 800 msec (= 200 msec x 4).
e 100 BPM’s sample time: 40 sec (= 800 msec x 50).

14
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FUTURE MEASUREMENT SYSTEM |
e In the future each BPM will have its own processor.
!‘
‘ . Signal
| rocene

e Each processor will measure 4 buttons
simultaneously.

e Expected Measurement Time: ~ 1sec (dominated by
I/O between the processors and the main computer).
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| DETERMINING BETA I

e Since 3 is not directly measured it needs to be
determined from the phase data.

e Relationship between 3 and ¢
L _dg

B ds
e Generally what is wanted is the difference from the
design lattice so rewrite above equation as:

58 _ _ d(og)

ﬂdﬁ sign d‘i’dc.ar gn
where

5.3 = .Bmcﬂ.s - ﬂde.ﬂmz
6‘35 = qﬁmms = ¢"d€'3‘i§"ﬂ

e This equation is valid even with coupling.

e Thus: 0/ is obtained by differentiating d¢.
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® _ EXAMPLE SPLINE FIT I

e Idea: To do the differentiation to get 3 first fit the
data using cubic splines. Example:

(i} 0 40 B0 a0 100
Detacior Indax

e The spline fit gives good results despite the large

iva]uaa of 63/1.

)
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ALTERNATIVE WAY OF OBTAINING
_ BETA

e One can obtain F by using a lattice model that defines the
layout of the ring and then adjusting model parameters
(such as quad strengths) until the ¢ and C as calculated
from the model matches the measured data (more on this
later).

o Once the model fits the data then
A(actual) ~ 3(model)

e Advantages:
o Can be very accurate.
e Disadvantages:

o Can be slow: The fitting can take time and
thought.

18
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CORRECTING THE LATTICE

e Given: A measurement of Ci9 and ¢.

Question: How do you calculate changes needed for the
quadrupole strengths and rotation angles to make the actual

lattice correspond to the design lattice.

1. Start with some model lattice defining the ring layout.
2. Define a Merit Function

M = dlzuwi [@,{mcns] e ':b‘n(m]]: +
Eﬂ W (¢s(meas) — dy(model))® +
Z W, (Cia(meas) — En{mﬂdf”]: +
dets

S Wi (ki(model) — ky(calib))® +
quads

S W (8(model) — 8(calib))’
TRquad
3. Vary the model k;’s and ’s to minimize M.
4, Change the actual machine parameters by
Ak = ki(design) — ky(model)
A6 = 6(design) — #(model)

o Note: The last 2 terms in M are to prevent the solution from
“walking”™ when there are degeneracies or near-degeneracies.

19



" CORRECTING THE LATTICE |

e Data taken before a correction:
a) Measufed - |

R

&) Spiine

o 20 40 B0 BO 100

e Corrections are made using:

o Quadrupole strengths (in CESR all quadrupoles have
independent power supplies).

o Interaction Region Quadrupole rotation angles.
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e Data taken after a correction:

#°[(a) theasilec - Jesigs

- h]li-nh-dw

-20
:'1 c) lﬁmh! I?lungr

d) $piinelFi

2["e) $piinelFa

1] 20 40 &0 B0 100

e Notice the change in scale!

o, /ey~ 2 (Ci).

1 y
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. LOCATING A QUADRUPOLE ERROR ]

e Finding a quadrupole error from the data is analogous to
finding steering errors from orbit data:

1. Say we want to check a location for an error.

2. Choose regions around the this location
‘ﬁq: @ region fit b region fit

3. Assume there are no errors in the A and B regions.
Fit (using linear least squares) the data in these regions
to “free waves”
S {{,, sin 2¢(s) + n, cos2¢(s)+C, s€ A
2 & sin2¢(s) + my cos2¢(s)+C, s€B

where £, 1, and C are fitting parameters.

4. Where the free waves intersect in the space in-between
the regions is a possible error location.
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o Measurement taken after CESR started misbehaving;
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@ [EXAMPLE QUADRUPOLE ANALYSIS|
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e Analysis showed the error location to be at a particular
quadrupole.

e I'rom the goodness of fit, the uncertainty in the computed
location was =1 m.

e The quadrupole controller card was replaced and the error
went away.

K

P
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| LOCATING A COUPLING EHRﬂR"]

e Procedure is analogous to finding a quadrupole error.

e Regions A and B are chosen and the C); data in
these regions is fit to the form:
(T, Sin@d_(8) + g cosp_(s) +
Ag Sin @, (8) + p, cosy(s) s€ A
T 8in ¢ (8) + pp cos p_(s) +
Ay sing,(s) + ppcosgy(s) s€B

where 7, g, A and p are fit parameters with

¢+E¢a+¢b
'i’—szﬁu_(t’b

Cra(s) =

1
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[EXAMPLE COUPLING ANALYSIS|

e Analysis of some data was done to locate any sources of
coupling in the machine arcs:
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e From the goodness of fit, the calculated uncertainty in the
error location was +2 m.

e The area around the calculated location was searched. A
back leg winding for a steering magnet was found next to

the beam pipe

e The back leg winding was pulled away. Result: The local
coupling error went away.

e Further analysis revealed other coupling sources and more
back leg windings were found near the beam pipe.

==
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| QUADRUPOLE MAGNET CALIBRATION I

e How to calibrate a quadrupole or skew quadrupole:
Vary the magnet strength and take before and after
lattice measurements.
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|_CONCLUSION ]

e Lattice function measurements can be done quickly
and accurately by shaking the beam and looking at
the response at the BPM’s.

e Such lattice function measurements are an invaluable
tool for machine operation.

o Example: The present system in CESR has cut
enormously the time it takes to commission a new lattice.

e The BPM electronics system needs to be designed
from the start to allow for lattice function
measurements.

e [t is important to have BPM’s in the coupling region
around the IR. In practice, space constraints means
you never have enough.




