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Abstract

Rigorous potential models of the nucleon-nucleon force can be derived using renormalization
techniques. I wrote a program in C to implement such a model. I used this program to
calculate several properties of nucleon-nucleon interactions to demonstrate the usefulness
of this model.

Background

Calculating properties of nucleon-nucleon interactions using QCD can be very compu-
tationally intensive or impossible. On the other hand, calculations that treat nucleons as
elementary particles are not very accurate. This paper describes a method of efficiently
including QCD effects while continuing to treat nucleons as elementary particles.[1]

This method for including complicated QCD effects is analogous to the classical electro-
dynamics method of approximating a complicated current source by a multipole expansion.
At sufficient distance, this is an accurate approximation if the size of the current source is
much smaller than the wavelength of the emitted radiation. In general, a probe of wavelength
Λ can not resolve details of a structure that is a size much smaller than Λ

In the nucleon-nucleon case, the “details” are the effects caused be the quark structure
of the nucleons. This structure is ∼ 1-2 fm. So nucleons with Λ > 2 fm (momentum
< 600 MeV) are insensitive to the exact QCD effects. Therefore the exact effects can be
accurately replaced by simpler approximations of the effects.

A standard way to approximate short distance behavior is with a delta function added
to the potential:

H =
p2

(2m)
+ V (r) + cδ3(r) (1)

The size of the delta function, c, is chosen to give a best fit to the data being modeled.
The Fourier transform of the potential makes it clear why a delta function will approxi-

mate short-distance behavior, and suggests how to extend the approximation. Because the
potential is short-range, the Fourier transform, Ṽ (q2) will depend weakly on the transform
variable, q2. Therefore, a Taylor expansion in q2 will be a good approximation of the function:

Ṽ (q2) = Ṽ (0) + q2Ṽ ′(0) + · · · . (2)

Transforming Ṽ (0) back to coordinate space gives the delta function. Transforming higher
powers of q2 gives derivatives of the delta function. This suggests that a short-range potential
with two “contact” terms,

V (r) = cδ3(r) + d∇2δ3(r), (3)

will allow a better approximation. Now the two “coupling constants”, c and d, must be
tuned to fit the data. Note that these parameters can be tuned to a single piece of data,
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rather than a global fit. The lowest energy data is used for the tuning, since it contains the
least error due to short-range effects.

The long range potential must also be included in the model. While the contact terms
above can be tuned to model an arbitrary short-range potential, the long-range potential is
specific to the system being modeled. For nucleons, the long range potential is due to the
exchange of one or more pions. The potential due to the exchange of one pion, the largest
contributor, is given by the Yukawa potential,

e−mπr

r
(4)

The exact form of the potential used in the calculations is given in the appendix. See Fig.
1 for typical potentials.
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FIGURE 1. A typical regulated long-range potential, and a typical smeared delta function

Now the general short range potential and the long-range pion-exchange potential must
be combined. The long-range potential needs to be regulated so that it will not have an
effect on states of high momentum, for which the potential is incorrect. Regulating the
potential is done by forcing the momentum-space form of the potential to zero for large
values of the momentum. This can be done by multiplying the momentum-space form of
the potential by something like e−q

2/(2Λ2), where Λ is the cutoff– approximately the smallest
value of the momentum excluded. The effect of these states will instead be included in the
contact terms. The contact terms also need to be regulated to avoid infinities associated
with the delta function. This is done by smearing the delta function over a finite distance:

δ3(r)→ δ3
Λ(r) ≡ Λ3e−r

2Λ2/2

(2π)3/2
(5)
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States with momentum greater than the cutoff are insensitive to the smearing of the delta
function, in the same way that they are insensitive to the exact QCD effects. The smearing
also regulates the delta function to exclude states with momentum > Λ. Fig. 1 shows a
regulated long-range potential and a regulated delta function.

The accuracy of the model will depend on the value of Λ used. For too small a value,
momentum states for which the long-range potential is accurate will be excluded, giving less
accurate results. For too large a value of Λ, states are included that are sensitive to the
short-range QCD effects that are not present in the model. This will not necessarily cause a
decrease in accuracy, but it can make the contact terms difficult to find. The value for Λ for
which the approximation stops improving then gives a good indication of the momentum at
which the short-range effects become important.

The Calculations

I used this potential model with the Schrödinger equation to calculate properties of
neutron-proton scattering, with total spin, j, one. These calculations were compared with
data to determine their accuracy. [2]

The j = 1 case is more complicated than the j = 0 case because there is a coupling
between the two ways of producing j = 1. The two ways are l = 0 (3S1 state) with spin one
and l = 2 (3D1 state) also with spin one.

The data used most was the phase shift in neutron-proton scattering. The phase shift is
the difference in phase between a free wave and a wave that interacts with a potential. The
shift is measured at a point outside the range of the potential, where the waves both have
the functional form of a free wave, but differ in phase. For example, an attractive potential
will tend to “pull in” a wave, causing the wave to have a greater phase than a free wave.
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FIGURE 2. The 3S1 phase shifts versus energy for two values of Λ. The data values are
also shown.
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Fig. 2 shows a plot of the calculated phase shift of the 3S1 state versus energy for two
values of the cutoff. A cutoff of 650 MeV is clearly more accurate than one of 50 MeV.
Figs. 3 and 4 show the progressive increase in accuracy of the model. Note that the contact
parameters are tuned for each value of the cutoff, using the phase shift data at 5×10−4 MeV
(not shown) and are not tuned for each value of the energy.
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FIGURE 3. Errors in 3S1 phase shifts for different values of the cutoff, plotted versus
energy.
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FIGURE 4. Errors in 3D1 phase shifts for different values of the cutoff, plotted versus
energy.

Notice how the error increases with increasing energy. This is due to the increasing impor-
tance of higher order terms left out of the Taylor expansion of the potential in momentum-
space (Eq. 2). It indicates the energies at which physics not modeled becomes very important.
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FIGURE 5. Error in the 3S1 phase shift, plotted versus the cutoff. The model no longer
increases in accuracy at Λ > 600 MeV.
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FIGURE 6. Error in the 3D1 phase shift, plotted versus the cutoff.

As the cutoff is increased too far, the model ceases to become more accurate. Figs. 5 and
6 show the error in the 0.05 MeV phase shift versus different values of the cutoff. At cutoffs
greater than 650 MeV, the error no longer decreases. Interestingly, all of the 3S1 phase shift
errors calculated have the same changing of sign at Λ ≈ 200 MeV as the E = 0.05 MeV case
shows (Fig. 5).
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FIGURE 7. Values of the contact parameter c, tuned for different values of the cutoff.
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FIGURE 8. The 3S1 and 3D1 radial wavefunctions of the deuteron.

For larger values of the cutoff, the contact parameters must account for the incorrect
physics seen by the high momentum states. The value of the contact parameter c, shown in
Fig. 7 plotted versus the cutoff, starts to increase rapidly at Λ ≈ 600 MeV.

The coupling of the 3S1 and 3D1 states produces a very loosely bound state, the deuteron.
Fig. 8 shows the calculated 3S1 and 3D1 radial wavefunctions with Λ = 500 MeV. Fig. 9
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FIGURE 9. Errors in calculations of the deuteron binding energy and the deuteron’s
quadrupole moment.

shows the errors in calculations of the binding energy and quadrupole moment of the
deuteron, with the contact parameters tuned to phase shift data. Neglecting the axis cross-
ings, neither of these errors decrease significantly past 600-700 MeV. The experimental values
used are -2.224575 MeV for the binding energy and 0.2719 fm2 for the quadrupole moment.

Conclusions

I calculated properties of neutron-proton interactions using a potential model that ex-
cludes states with momentum > Λ. I fit this model to low energy 3S1 phase shift data
for different values of Λ. The errors of the calculated 3S1 and 3D1 phase shifts decreased
steadily at all energies with increasing Λ until Λ ≈ 650 MeV, at which point the error
remained fairly steady. The errors of calculations of the binding energy and quadrupole
moment of the deuteron followed a similar pattern. The minimum error was about 5 % for
the binding energy and 0.5 % for the quadrupole moment.
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Appendix

All of the calculations integrate the radial Schrödinger equation for a coupled 3S1,
3D1

state, with contact terms and regulated potentials:(
− 1

2mr

d2

dr2
+
l(l + 1)

2mrr2
+

[
VS VS−D
VS−D VD

]) [
χS
χD

]
= E

[
χS
χD

]
. (6)

With

VS = −απνΛ(r) +
c

Λ2
δ3

Λ(r)− d

Λ4
∇2δ3

Λ(r) (7)

VS−D = −2
√

2απνT (r) +
dsd
Λ4
δ3
T (r) (8)

VD = −απ [νΛ − 2νT (r)] (9)

where

Λ2δ3
T (r) ≡ d2

dr2
δ3

Λ(r)− 1

r

d

dr
δ3

Λ(r) (10)

νΛ(r) =
1

2r

[
e−mπrerfc

(
(−rΛ−mπ/Λ)/

√
2
)
− (r → −r)

]
(11)

νT (r) =
1

m2
π

(
ν ′′Λ −

ν ′Λ
r

)
. (12)

mπ ≈ 140 MeV is the mass of the pion, απ ≈ 0.07. c,d, and dsd are the contact terms. For
the above calculations, d and dsd were set to zero.

Schrödinger’s equation was integrated using the “odeint.c” routine found in Numerical
Recipes.

The phase shift for a given orbital angular momentum, δl, is given by:

tan(δl) =
kRj′l(kR)− βljl(kR)

kRn′l(kR)− βlnl(kR)
(13)

where

βl ≡
(
r

χl

dχl
dr

)
, (14)

with jl and nl the spherical Bessel functions, and j′l(kR) standing for the derivative of jl(kr)
evaluated at kR.

To evaluate the phase shift, χS(r) and χD(r) were integrated from near zero to a large
radius (À 1/mπ). The initial conditions were:
χS(r) = r
χD(r) = br3.
b was chosen so that
χS(r)→ 0 for r large for the 3D1 shift
χD(r)→ 0 for r large for the 3S1 shift
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To find the bound state, χ was integrated from large r to near zero with initial conditions:
χS(r) = 0
χD(r) = 0
χ′S(r) = 1
χ′D(r) chosen such that χD(0) = 0. The value of E that gives χS(0) = 0 is the bound state
energy.

The quadrupole moment is given by:

1√
50

∫ ∞
0

χS(r)χD(r)r2dr − 1

20

∫ ∞
0

χ2
D(r)r2dr (15)

Footnotes and References

1. This background is a simplified summary of parts of G.P. Lepage, How to Renormalize
the Schrödinger Equation.

2. Partial wave analysis of the Nijmegen University group, http://nn-online.sci.kun.nl/.
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