
1

The Process Manager GUI for CLEO III

Natalie Griffith

Department of Materials Science and Engineering

Wayne State University, Detroit, MI, 48202

Abstract

Because of the numerous hardware and software systems associated with the operation of the
CLEO III Particle Detector, it is necessary to develop a user friendly GUI to serve as an error
monitoring and control system for its various software components. Utilizing the Java
Programming Language and CORBA, the Process Manager GUI is developed to interface
with all of the Process Managers, or software programs that monitor and control all of the
processes, throughout the CLEO III system.

Introduction

The CLEO III Particle Detector is controlled by many different smaller software and
hardware units, built one upon another, in layers. Due to the large number of hardware
and software components associated with its operation, it is necessary to develop a
number of GUI’s, to serve as monitoring and controlling devices, for the software
components of the system. One of the major components in this plan is to develop a
Process Manager GUI, to monitor and control all of the Process Managers running
throughout CLEO III.

One area of concern is which of the many programming languages to use. Because of
the ease in GUI development, the Java Programming Language is used to develop the
actual GUI, and CORBA (Common Object Request Broker Architecture) is used as the
communicator between the Process Manager and the Process Manager GUI.

An understanding of the operation of CLEO III’s Online System and its functionality,
Java, CORBA and IDL files, the concepts of a Process Manager, and generic GUI’s are all
important components in developing the Process Manager GUI.

Online System

The Online System essentially controls and monitors all of the hardware and software
components that are necessary for the successful operation of the CLEO III particle detector.

The CLEO III detector is directly linked to the various hardware systems such as the power
supplies, the gas controls, the high voltage control systems, the cooling systems, etc. These

2

many hardware systems are monitored and controlled by C++ software, essentially software that
controls hardware, and is linked to that hardware by system specific connections. C++ is utilized
for this layer because of its the high speed and good interface capabilities to the hardware
components. The C++ software is then connected to the Process Managers, or the software that
controls other software, through generic operating systems such as NT Windows, Unix, and
VxWorks. The Process Manager GUI interacts directly with the user and communicates with the
Process Managers via CORBA, as represented by Figure 1.

FIGURE 1. A Generic Example of the CLEO III Online System.

Java

Java is a general purpose, object-oriented programming language that supports the
development of GUI applications, as well as, the development of client server applications. It is
chosen as the ideal programming language in which to develop the Process Manager GUI
because of the availability of the tools necessary for the design process. These tools are not
available with the C++ programming language. Although Java is slower than C++ it is not
necessary to utilize the faster language, as the GUI only needs to operate as quickly as the user

Hardware

C++ Software

Java GUI

P.M.’s

Gas

High
VoltageGas

High
Voltage

CLEO

P.M. GUI Gas GUI
H. Voltage

GUI

Process
Manager

System Specific

OS

CORBA

3

accessing it. Also, Java GUI’s are portable and can be used as applets in web pages. They do
not have to be recompiled when used on different operating systems, increasing the ease of its
use.

CORBA and the IDL

CORBA, or Common Object Request Broker Architecture, is a client-server
communication package that supports both Java and C++. Its purpose is to serve as a connection
between the client, in our case the Java GUI, and the server, written in C++. The IDL file
defines the client server communication. Within its file, the IDL has a list of functions that both
Java and C++ can use to talk with one another. Essentially, CORBA locates the object, routes
the request, and returns the results. A CORBA object, or variable, contains the connection to a
specific server, which provides a service. In our case, it gets the list of the processes.

Process Manager

The Process Manager is one of the software programs that monitors and controls the
processes throughout the detector, providing the functionality to start, stop and restart programs
on remote hosts. When retrieving code from the database, the Process Manager interacts with
the programs database server, translating the version select input parameter. Finally, the Process
Manager serves as a log for each of the processes, and outputs a list of the processes that occur.

When one of the many Process Managers running throughout the CLEO III system is
started, it is registered with Igor, a C++ process that keeps lists of registered servers. Once the
Process Manager GUI is initialized, it uses CORBA to request the list of the Process Managers
that are registered.

GUI

Graphical User Interfaces, or GUI’s, are user friendly programs that are based on the
processing of events such as the click of a mouse or the stroke of a key. The Process Manager
GUI processes events such as List Selection events and Action events. List Selection events
occur when the user selects a specific line of information from a list of data. Action events occur
when the user clicks on a button within the GUI panel.

Again, when the Process Manager GUI is started, it uses CORBA to request the list of
Process Managers that are registered, and displays them in the “Process Manager” list, as shown
in Figure 2.

Upon selecting a Process Manager from the Process Manager list, a “Processes” table
appears, displaying all the processes that are connected to that specific Program Manager, as in
Figure 3. The table displays information such as the name of program that is running, the
programs’ log identification number, the status of the program, and the programs’ starting and
ending dates.

4

FIGURE 2. Process Manager GUI – Initial Implementation. Process Manager list filled.

FIGURE 3. Process Manager GUI – Process Manager selected. Processes table filled.

5

After selecting a specific line in the Processes table, an Error Message Log is displayed.
The Error Message Log outputs lines of information, as shown in Figure 4, each of which
contains one of the four following keywords: Info, Debug, Warning, or **Error**.

FIGURE 4. Process Manager GUI – Process Selected. Error Message Log displayed.

The Info and Debug messages show only as early warnings of impending problems,
helping the GUI user to understand, more readily, the meaning of the warning and error
messages that occur. Because of the importance of finding the message lines containing only the
“warning” and “error” keywords more easily, two buttons, “Hide Info” and “Hide Debug” were
designed. When selected, each suppresses all lines, within the Error Message Log, that contains
those keywords, leaving only the problematic “Warning” and “**Error**” messages displayed.
After the buttons have been engaged and the desired messages have been suppressed, the text
within each of the two buttons changes to “Show Info” and “Show Debug”, as seen in Figure 5.
This allows the user to re-display the suppressed information at any time. When either of the
buttons are again selected, the suppressed text re-appears, and the text within the buttons reverts
back to their original prompts.

6

FIGURE 5. Process Manager GUI – Error Message Log. Keyword “Info” suppressed.
 Text within the button changed to “Show Info” allowing user the opportunity
 to re-display the suppressed information.

A large amount of information is included on each message line of the Error Message Log.
To cut out insignificant information such as the date and time that the message occurs, a “Hide
Time” button is programmed. After selecting the button, and the date and time information from
each of the lines of the Error Message Log is eliminated, the user has the option of re-displaying
the date and time as needed, shown in Figure 6.

The final two buttons, the Start and Stop buttons have not been implemented because the
needed functionality has not yet been implemented on the server. When implemented, the user
will be able to start a program. When errors occur, they can stop the program for repairs, and
then, restart the program, again represented by Figure 6.

Conclusions

The CLEO III Particle Detector is controlled by many different smaller software and
hardware components necessitating the development of GUI’s to control and monitor the
various parts of the system. One main GUI, the Process Manager GUI is developed to
allow the user to control and monitor the Process Managers running throughout the CLEO
III Particle Detector. The Process Manager GUI should aid in the debugging and
maintenance of the CLEO III online system.

7

FIGURE 6. Process Manager GUI – Error Message Log. Date and Time information
 is suppressed. Text within the button changed to “Show Time”

 allowing the user to re-display the suppressed information.

Acknowledgments

I would like to acknowledge Mr. Elliot Lipeles and Professor Alan Weinstein of the
California Institute of Technology. They developed and supervised this REU project and Mr.
Lipeles gave his time, resources and knowledge willingly to help introduce me to, and educate
me in, the world of the Java Programming Language. I would also like to thank Professors
Giovanni Bonvicini and David Cinabro of Wayne State University for their assistance in
preparing for this program. In addition, I would like to thank Professor David Cassel for
allowing our continued participation in this program. This work was supported by the California
Institute of Technology, Division of Physics, Mathematics and Astronomy, the National Science
Foundation REU grant PHY-9820306, REU grant PHY-9731882, and research grant PHY-
9809799.

Footnotes and References

 1. http://www.lns.cornell.edu/restructed/COMP/DEC/java121/api/.
2. Horstmann, Cay S., et.al. Core Java Fundamentals 2, Sun Microsystems, Inc. (1999).

