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Abstract

CLEO III will use a Kalman track fitter. Given is a detailed description of how the fitter
works and what problems were found. Comparisons were made between the two different
fitting packages, KalmanFilter and Klmn3, using Monte Carlo simulations. The purpose of
this comparison was to determine KalmanFilter worked the best. Our tests indicated that
the two fitters were comparable.

Introduction

The goal of this project was to test the Kalman fitters and identify any problems with
the fits. A Kalman track fitter, using information about where in the detector a particle
went, tells us the position and momentum of the particle at any point in time. The Kalman
fitter reads a list of preliminary helix fits, which it then processes and stores as fit tracks.
Klmn3 is a C++ wrapped version of the CLEO II fitting package klmn, which is written in
Fortran. KalmanFilter is a new package completely written in C++, which makes it more
easily extensible in the C++ software system so there are no language interfacing issues.

We use Monte Carlo simulation, which is randomly created tracks, to test the fitters
because we know how the tracks were created. Monte Carlo simulates the detector response,
including physical processes. Two of the processes that Kalman fitters must account for are
multiple scattering and energy loss.

Track Parameters

A particle has position and momentum. We want the best momentum closest to the
interaction point, where most of the tracks are created. Electrodynamics tells us that in a
constant magnetic field the track will go around in circles tracing out a helix with a radius
that is proportional to the transverse momentum (perpendicular to the field direction). If we
measure the curvature and know the magnetic field, we can get the transverse momentum.
Because the particle is going to follow a specific path we can represent the particle’s trajectory
at any point, which is enough information to give us the entire path. By expressing the
tracks position and momentum at a suitably chosen point we can get rid of one of the six
parameters, leaving us five (see Figure 1). The fitting packages we tested have a 5–parameter
helix representation for tracks. Three of the parameters describe the particle momentum and
two parameters give us its location in space. The five parameters are: C,φ0, D, λ, and z0.
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FIGURE 1. Track parameters.

C describes the curvature, where 1
2c

equals the radius of curvature. φ0 is the φ of the track
momentum at the distance of closest approach to the z-axis. D is the signed impact parameter
in the x-y plane. λ is cotθ, where θ is the polar angle of the momentum measured from the
positive z axis. z0 is the z of the track at the point of closest approach to the origin in the
x-y plane. These parameters do not tell us the location in space of where the particle was
produced, nor its decay. The particle’s position is described as its point of closest approach
to the reference point.

Processes That Affect the Fit

Processes that can alter the helix fit include multiple scattering and energy loss. Mul-
tiple Scattering is what happens when a charged particle collides with the atoms of some
material, causing the particle’s direction to change. The particle scatters in the two planes
perpendicular to its path without losing energy (see Figure 2). The scatterings that occur
in each plane are independent of one another.

As a particle passes through material it also loses energy, which affects its trajectory.
Energy loss is the product of the interactions between a particle with the detector walls
and gas molecules. During energy loss there is a gradual decrease in the particle’s radius
of curvature, causing the track to spiral more tightly. Figure 3 shows an example of energy
loss.

Helix fitters are not equipped to handle multiple scattering, so those processes are ac-
counted for in the Kalman fit, which can correct for multiple scattering. To minimize this
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FIGURE 2. Illustration of multiple scattering.

FIGURE 3. Illustration of energy loss.

effect we try to make the material as thin as possible so not too much scattering happens.

Results

For every normal measurement of a point, we get a gaussian. We define the error to
be the width of this distribution. Our measurement will have some error, so we divide the
measurement (minus the true value) by what we believe the error is. If our estimation of
the error is correct then the width of our gaussian will be one. What we want to see in our
pull distributions is the mean at zero and the sigma to be one. When the mean does not
equal zero it means that we are getting the wrong central value. When sigma is not at one
then the estimation of errors is incorrect. (Figure 4) are examples of pull distributions, (a)
is a good distribution, where the mean is at zero and the sigma is close to one, (b) shows a
systematic bias, where the gaussian is not centered at zero and our mean and sigma values
are wrong as well.

3



Fast Monte Carlo Full Monte Carlo

FIGURE 4. φ0 pull distributions.

Using the Monte Carlo simulated data we were able to show that KalmanFilter performs
about the same as Klmn3. Our tests also revealed problems with the Monte Carlo. The
problem appears the same for both fitters. Tables 1 and 2 show how similarly the Monte
Carlo acts with both fitters. Table 3 shows how the biases in the fitters differ.

To verify that there was a problem with the Monte Carlo we generated some data with
FastMC and it gave us much better results. Though the fitters are comparable in perfor-
mance, the KalmanFilter is preferred because it is more extensible.

TABLE 1. KalmanFilter

Helix Parameter Mean σ Mean
δMean

1−σ
δσ

C -0.258 1.067 13.217 4.845

φ0 0.791 1.124 38.446 8.501

d0 -0.495 0.994 27.180 .476

cos θ -0.175 1.051 9.059 3.749

z0 0.202 1.026 10.773 1.956
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TABLE 2. Klmn3

Helix Parameter Mean σ Mean
δMean

1−σ
δσ

C -0.260 0.968 14.718 2.518

φ0 0.730 0.961 41.519 3.111

d0 -0.500 0.938 29.197 5.113

cos θ -0.171 0.940 9.940 4.951

z0 0.195 0.910 11.744 7.668

TABLE 3. Comparing KalmanFilter and Klmn3

Helix Parameter Difference in Mean Significance of Difference

C 0.00248 0.0263599169

φ0 0.06062 0.0270746765

d0 0.00536 0.0250155546

cos θ 0.00386 0.0258173663

z0 0.0072 0.0250946689
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