
Developing CLEO III Online Data Analysis Software

Heather Smith

Department of Physics

University of Illinois, Urbana-Champaign, Illinois, 61801

Abstract

The current CLEO III hardware and software upgrade includes the replacement of KANDI,
the Kansas Display, that was previously used to display plots of the data collected at the
end of each run of the detector. KANDI depended on accessing data through the CERN
libraries and using a specialized graphics library, HIGZ. The data from the detector for
CLEO III will be stored in a database, instead of the CERN libraries, so the decision was
made to completely rewrite KANDI in two parts using CORBA. The first part is written in
C++ and is required to retrieve data from the database and format it so that the data can
be plotted by software written in Java. The C++ code is written, but has yet to be tested
in conjunction with the Java code to observe how well the two pieces of code communicate
with each other to accomplish the desired objective.

Introduction

One of the most important indications of what the detector is doing and what kind of
data are being produced is the plots displayed by the online data analysis software. It is
extremely useful to obtain a running status report of what data is being produced to make
sure the detector is working properly. If periodic checks are not made, then several runs
of garbage could be collected that would simply be a waste of time and energy—hence the
motivation to develop and maintain useful, reliable online data analysis software.

Figures 1 and 2 show examples of KANDI plots. The histograms produced by KANDI
usually display the variable that is being examined, such as beam energy, versus run number
so that one of the people monitoring the detector can see how the variable changes over time.
There are usually specified limits that the variable must remain within or there is a serious
problem. If one of the people monitoring the detector notices that a key plot is significantly
different than expected, an expert is called who will know how to deal with the situation.

KANDI was the online data analysis software developed for CLEO II. Now CLEO is un-
dergoing significant hardware and software upgrades that require at least a modified version
of this existing code. At least part of the motivation for updating the KANDI code is that
it was written in Fortran, and there has been a concerted effort to convert most CLEO III
code to C or C++.

However, one of the more important reasons for essentially replacing KANDI is that
KANDI is designed to retrieve data to be plotted from the CERN libraries, and data for
CLEO III will be stored in a database instead of in CERN library format. So, all of the calls
to obtain data to plot would have to be completely rewritten to fit the new database format.

Also, KANDI made use of HIGZ, a specialized non-standard graphics library to plot the
data. Anyone revising the KANDI code would first have to familiarize him/herself with the
HIGZ library—which would never be applicable to any other project. It was decided to

1



FIGURE 1. (top) The beam energy is plotted as a function of run number. The on-
resonance beam energy should be 5.2945 GeV, give or take 0.5 MeV. If the beam energy
drifts outside of this range please ask the CESR operator to make the appropriate energy
change. (bottom) The B field is plotted as a function of run number in units of 1000 Gauss.
10 Gauss fluctuations (0.01 units) are normal. [1]

simply scrap KANDI—on the basis that it would take more time to try to salvage it than
it was worth—and start fresh using C++, CORBA, and Java to write a whole new software
package for displaying data while the detector was running. This even makes it simpler to
add new features to the software package.

Improving on KANDI

One of the most salient improvements of the new software design over KANDI is that—
because of CORBA’s built-in flexibility—the plots of the data may be viewed from any
computer linked into the system. This means that experts who are on call in case of emer-
gencies can, when rousted out of bed at 4 AM, look up the questionable plot on their home
PC instead of being forced to march all the way in to the Counting Room where KANDI was
permanently stationed. This makes the new software more convenient and generally flexible
than the previous KANDI code had been.

One of the other features discussed was allowing the user to create plots that were com-
pletely user-specified, instead of being limited to a predefined set of plots. This feature could
be useful if there were a specific plot that might be important to look at only once in a very

2



FIGURE 2. (top) The temperature of the DR endplate is important because wires may
break if it gets too hot. (bottom) A change in the mu pair cross section might indicate a
problem with the trigger or tracking. Look for shifts in other Kandi plots and then call the
appropriate expert. [1]

great while. Providing for this possibility gives the code more flexibility to adapt itself to
unusual circumstances.

Writing the code in standard C++ and Java makes the software easier to debug and
maintain over time. It is more readable and universally understandable so that it can be
adapted fairly quickly by anyone with sufficient background in most well-known programming
languages. One of the most significant worries about KANDI was that it was hard to
maintain since very few people could—or wanted to—decipher the HIGZ graphics library
calls and learn enough about the code to keep it working.

The new software even allows plots to be generated from calibration runs, which will be
useful as all of the upgrades are installed and tested. KANDI, on the other hand, would
only plot data runs.

These are some of the more obvious advantages the new software has to offer in its task
of replacing KANDI.

CORBA

CORBA is, essentially, simply a bridge between two pieces of code, a server and a client.
The server and the client do not necessarily have to be on the same machine—hence its

3



portability and flexibility. CORBA allows the server to communicate with the client through
an idl (interface definition language). The idl specifies which functions and parameters both
pieces of code can access. The server and client do not even have to be written in the same
programming language—in fact, they often are not. CORBA allows the programmer to
write each part of the software in the language that handles it best. For example, Java is a
very useful language for writing GUI’s and displaying graphics—like plots of data. However,
Java can be somewhat slow and cumbersome in areas where C++ excels. By giving the
programmer the ability to write code in the language that performs best in that particular
area, CORBA allows one to write the most efficient code possible to perform any given task.

CORBA also has very useful features like allowing the programmer to declare a variable of
type Any in the idl. That way, when the idl is being written, if the type of the specific variable
could be one of six or more possibilities, the programmer does not have to write a large case
statement or overload a function for the several possible types of the variable. CORBA also
allows the programmer to define sequences that are variable in length. CORBA makes a
lot of the details of a complicated project simpler by handling some the grunt-work on its
own.

For this software package, Java is being used to actually perform the graphics manipula-
tions and plot the data and C++ is being used to access the data and send it on to the Java
program. In the idl, two interfaces are defined, the RunHist and UserHist interfaces. The
RunHist interface deals with standard set of plots that must be displayed at the end of every
run. The UserHist interface deals with specialized plots that may useful if the standard
plots are not displaying the data required for the particular situation.

Interfaces

The interface that will be used most frequently is the RunHist. There are three functions
in the RunHist implementation (written in C++). The first function gets a list of histograms
to create from a script and assigns them a queue number to keep track of which request should
be processed when. The final format of the aforementioned script is yet to be determined.
However, its general purpose is to provide a list of specifications for creating Histogram
objects in the form of a SpecTableEntryList. The next function is called with a set of
specifications for creating a histogram object to plot. It fills the histogram with the requested
data and returns a histogram object with the appropriate number of axes for the number of
variables and other such minor, but important, details. The last function sends a maximum
of four histograms at a time to be plotted on a page. It looks for the next list of histograms
on its list to be processed and keeps sending them off four at a time (or less, if there are
fewer than four left to be sent) until there are none left to send.

Filling a histogram object with the requested data involves a lot of handshaking with
the database itself, so there are two separate classes that deal with extracting the correct
data from the database. The first class is the DataCache class that is mostly useful for
RunHist functions and implementations. This class keeps a cache for each of the variables
in the RunHist script so that the data does not have to be transferred out of the database
every time a plot is popped up in a window. This way, the values of the variables that will
be used over and over again are stored for the last X number of runs in a specific place so
that less time will have to be spent extracting data. Each time a new run is finished, the

4



cache for each variable is updated and new plots are made. This class can also be useful for
UserHist plots because the variable to be plotted may already be, at least in part, cached.
For example, in the cache, only the values for the last fixed set of runs are kept around. If
a shifter wanted to (ok, had to...) look up some runs that are not in the cache and compare
them to the ones in the cache, then half the values are already found and waiting to be
plotted. The DataCache class, in general, is a useful time and CPU saver.

The second class that handles getting information out of the database itself is the
DataRetrieval class. It creates and deletes data caches. It fetches all the data for a
particular run number and then fills each data cache with the values for its variable for a
specified run range. It will also find the data for user defined histograms. If there is no
data cache for the variable, then it finds the data anyway and sends it back to the UserHist

interface.
The DataCache and DataRetrieval classes do not actually touch the database them-

selves because there is yet another layer of masking in between. The two classes developed
actually contact the retrieve() function in the DBRunStatistics idl to make the direct calls
to the database. Since the retrieve() function returns all the data from the database for
a particular run number, the DataCache and DataRetrieval classes only call that function
once every time a plot needs to be updated. When the data caches need to be filled, initially,
then the retrieve() function is called several times (once for each run number) and the
RunSummary functions loop over the data that needs to be initialized. That way, all the data
for one run number is retrieved, then all the variables that needed to be updated for that
run number are stored in the data cache, and the next influx of data is retrieved for the next
run number and so on until all the data caches are filled.

The UserHist interface gets one set of specifications for a histogram and does a custom
version of what the RunHist interface does. The main differences between the RunHist and
UserHist interfaces are that the RunHist interface keeps data cached so that it will save
time and the UserHist interface produces one plot at a time (not many from a script) and
does not need to be as efficient as the RunHist interface. The RunHist interface will be run
much more often, so it needs to be faster and more efficient.

Conclusions

The C++ portion of the Online Data Analysis software that will replace KANDI for
CLEO III has been written. Most of it has been tested to the extent that it can be without
coordinating testing with the Java portion of the software. The C++ code provides func-
tionality and flexibility and attempts to do its task quickly and efficiently. A lot of thought
has been put into the functions and classes written to handle the data and process it for
the Java program. The RunSummary idl has been written and rewritten in an attempt to
make sure that it provides enough functionality for the Java code so that it will be able to
successfully plot the data passed to it from the database. The RunSummary program uses
several idl’s for various purposes to orchestrate the smooth flow of the code. The Histogram
idl provides a set of parameters to be filled that describe what is required to plot a histogram.
The DBRunStatistics idl actually makes the calls to the database and returns all of the data
for one run number. The RunSummary idl dictates how the C++ code will communicate
with the Java code to actually produce plots.

5



What remains to be done is to actually test the C++ and Java code together to be sure
that they coordinate well with each other. Also, a great wealth of comments will be added
so that the code not only works reasonably well, but is also maintainable and readable for
those who need to modify the code in the future.

Acknowledgments

I would like to acknowledge Dr. Andreas Wolf from Cornell University for proposing this
research project and his endless patience as I ploughed through new realms of C++ and
CORBA. I would also like to thank all of the graduate students, postdocs, and professors in
the Illinois office who were always willing to answer my questions and provide guidance.

Of course, I cannot forget to thank my fellow colleagues in the REU program who inspired
me with their diligence and perseverance, and all of the faculty and staff who made this REU
program at Cornell University so very enjoyable, entertaining, and instructive.

This work was supported by the National Science Foundation REU grant PHY-9731882
and research grant PHY-9809799.

Footnotes and References

1. CLEO Run Management, “GLOBAL Histograms”,
http://lnson3.lns.cornell.edu/doc/kandi/node3x.html

6


