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Abstract

Free electron lasers (FELs) constructed from storage rings and linear accelerators provide
for strong, tunable sources of sub-visible wavelength coherent radiation.  In this work we
perform a one-dimensional simulation of a complete FEL oscillator for the 5 GeV Cornell
electron storage ring (CESR) and the 350 MeV Cornell linear accelerator.  We find viable
storage ring FELs in the vicinity of 1.5 GeV beam energy and 50 nm output, and linac
FELs around 320 MeV with 475 nm output.  Both devices have a peak cavity power on the
order of Watts.

Introduction

A free electron laser (FEL) essentially converts energy from a relativistic electron beam into
coherent electromagnetic radiation [1].  By running an electron beam through a periodic undulator
magnet, the electrons are accelerated in the transverse direction and will spontaneously radiate.  A
transverse energy modulation introduced by the undulator allows the radiation field to influence the
beam, thereby extracting more energy from the electrons via stimulated emission.  Given a long
enough time scale, communication between the electrons will lead to an exponential growth in the
radiation field.

The simulation code FELSim models the output radiation field and longitudinal electron
trajectories of an arbitrary number of particles as they propagate through the system.  We use actual
beam parameters from CESR and the Cornell linac, as provided in the Appendix, to study the time
evolution of the system.  This simulation allows us to determine how variables such as beam
emittance, energy spread, and sheer physical size constrain the complete parameter space of
electron beam, undulator magnet, and output field in which a FEL might be constructed.

Theory of the Free Electron Laser Oscillator

The complete system we use in examining the FEL possibilities for the Cornell electron
sources is shown in Fig. 1.  Each device has key theoretical characteristics that must be elucidated
in order to understand the simulation procedure.  For a periodic planar undulator magnet of
wavelength λu, magnetic field strength B, and an electron beam of relativistic gamma factor γ, the
fundamental radiation wavelength at an angle of observation θ from the beam axis is given by:
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where K is the so-called undulator parameter, K = 9.344 B(kG) λu(m).  Calculations of the
electron trajectories in the undulator reveal that a transverse velocity modulation occurs which
allows for energy exchange with a co-propagating electric field [2].  To accurately model this
system, we must apply a self-consistent approach of using the electron beam as a current source
for the radiation
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FIGURE 1. Schematic of a complete FEL oscillator.  The electron beam enters at the
modulator (undulator magnet) and exits after the output section.

field, and then letting this field act back on the electron beam.  Murphy and Pellegrini derive the
following set of equations to describe this process:
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where c.c. indicates the complex conjugate, and Ne is the number of electrons.  Differentiation in
Eqs. 2-4 is with respect to the scaled time variable τ = (4πρc/λu)t.  Eqs. 2 and 3 are in fact 2Ne

equations, a scaled phase and energy, respectively, for each electron.  Eq. 4 describes the radiation
field amplitude.  Note that these equations have only one parameter, ρ, the so-called FEL
parameter:
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is the electron beam relativistic plasma frequency, e and m are the electron charge and mass, c is
the vacuum speed of light, Ipk is the peak current in amperes, and σr is the r.m.s. beam radius in
meters.  Table I of the Appendix provides a listing of the actual beam parameters used in
simulation.  The FEL parameter is a measure of the beam coupling to the radiation field, and goes
inversely with γ, indicating lower coupling for high beam energies.

As the system evolves, the electrons will begin to spread out in energy and bunch in phase
with respect to the field.  It is this bunching which allows for enhanced superposition of the
emitted radiation, and a correspondingly high output power [1].  FELs may start up in one of two
ways: a seed laser at the radiation wavelength can provide an initial field, or an initial bunching of
the electron beam in the form of phase noise can be used.  For sub-200 nm outputs, no seed lasers
exist, and therefore startup from noise is the only option.  The sheer physical size constraints of the
magnets severely limits the optical gain of the undulator, so it is advantageous if some appreciable
pre-bunching exists.  An optical klystron (OK), a device composed of two undulators and a
dispersive magnet (see Fig. 1) does just this.  By converting the energy modulation introduced in
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the first undulator into a phase modulation on the optical wavelength, the beam is effectively pre-
bunched and primed to radiate more strongly and quickly in the second undulator [3].

One final component of a FEL oscillator is the cavity end mirrors.  For the electron beams
in consideration, it became clear early on that a single pass system would not provide nearly
enough output power, and thus a resonant cavity with round trip time equal to the electron pulse
spacing is required.  Materials with reflectances of 0.85 at wavelengths down to 10 nm have been
manufactured, and could be used for the mirrors [4].

Simulation Input Parameters

The FELSim code is a simulation of the complete FEL oscillator described in the preceding
section.  An incoming electron bunch, or series of bunches, between 102 and 104 particles is
inserted at the beginning of the modulation undulator and then run through the system over an
arbitrary time interval.  Each electron is assigned a phase and energy, so that the phase space is
purely longitudinal.  These two degrees of freedom do, however, allow for accurate simulation of
beam energy spread and bunching.  The electrons are initially distributed in pairs of the same
energy, chosen at random from a Gaussian distribution, with phases given by:

ψ01 = 2πR (6)

ψ02 = 2πR + π (7)

where R is a random number between 0 and 1.  This distribution technique cancels the shot noise
which would occur in the small field regime due to inaccurate statistics, while still allowing the
electrons to bunch and produce exponential field growth on longer time scales [5].

One two-dimensional effect, however, is particularly important to any FEL simulation –
beam emittance.  If the transverse beam size does not sufficiently overlap the optical mode, then
there will be little energy exchange and optical gain.  We can describe this problem one-
dimensionally as an effective energy spread that will reduce the gain for high emittances.
Expanding Eq. 1 to lowest order in γ, K, and θ yields:
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If we define the beam emittance as ε=∆θa, where a is the maximum deflection amplitude along the
undulator field axis, then the two rightmost terms become:
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where λβ is the beta function of the undulator magnet.  We take λβ to be the “natural” beta function

of the undulator, which is 2 λuγ/K, so that:
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We include this spread in our simulations, using the ring and linac emittances provided in Table II
of the Appendix.  Note that the linac emittance is rather poor, and yields an effective spread large
compared to the coupling strength ρ.  All linac simulations were conducted assuming an emittance
1/10 the current value, thereby avoiding this isolated problem [6].

An optical klystron is even more sensitive to energy spread, with an approximate
acceptance given by the simple relation:

( ) ( )G GOK FEL
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It is inaccurate, however, to include the effective emittance spread in our klystron calculations, as
the dispersive magnet performs an entirely different function than the undulator.  In order to
properly simulate a complete OK oscillator, one must use a three-dimensional simulation, which is
beyond the scope of this work.  We may still use an estimate of the ratio GOK/GFEL derived from
low emittance simulations to obtain a rough prediction of the acceptance and gain for a given set of
input parameters.

For a FEL/OK in a lossy resonant cavity, it is imperative that enough field remain in the
cavity when the next electron bunch arrives.  It has been determined via simulation that a gain per
pass of unity is required early on to ensure an exponential buildup in the long run.  As we increase
the electron beam energy, eventually the gain per pass will reduce to unity.  This energy defines the
critical gain criteria of the system.  Alternatively, when the energy spread effectively degrades the
gain to unity, this energy defines the critical spread criteria of the system.  For a given magnetic
field, undulator wavelength, energy spread, beam intensity, and emittance, the critical energy is the
lower of these two values, and defines the maximum beam operating energy for use in a FEL
oscillator.  The only difference between the storage ring and linac in this regard is that the linac can
output 35 sequential bunches, while the storage ring can have 25 circulating bunches for the bunch
intensities in consideration.  After 35 passes of a linac oscillator, the field will simply decay to
zero.  Oscillations in the storage ring may continue indefinitely, although energy spread will
accumulate within each bunch over time.

The parameters described above constitute the full input of the FELSim oscillator
simulation.  Fig. 2 shows the single pass evolution of the electron phase space and radiation field
amplitude for a typical set of beam and magnet parameters.  From τ = 0 to τ = 1.22 the beam is in
the first undulator, which introduces an energy modulation.  The dispersive magnet slews the
phase space in a relatively short amount of time, which then allows for exponential buildup in the
output undulator.  In considering the entire parameter space of which a FEL can be chosen,
however, we cannot simulate every possible system due to computation time constraints.  Instead
we employ the small signal gain result of Murphy and Pellegrini to determine the gain per pass of
an undulator starting from some small initial field [7].  This approximation may then be used with
the gain and spread criteria described earlier to determine a given system’s critical energy.  The full
set of critical energies and input parameters constitutes the complete parameter space of viable
FELs.  A detailed simulation of an attractive system is then performed to accurately determine the
output field behavior and peak cavity power.

Results

Figs. 3 and 4 illustrate the parameter space from which a storage ring or linac FEL can be
constructed.  The upper plots in each figure fix the bunch current or intensity, and undulator
parameters, to show where the gain and spread criteria limit the choice in beam energy.  The lower
of these values is the critical energy for a given parameter set, and this quantity is plotted for a
number of magnetic field contours in the lower plots.  One may then simply pick a point on any
contour for simulation, as this represents a viable FEL oscillator.
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FIGURE 2. Typical FEL oscillator single-pass simulation conducted with 2,000 electrons.
The radiation field amplitude |A| is given a large initial value of 0.2, as might be the case
after field buildup over a number of passes, to demonstrate the effect of the dispersive
magnet more clearly.  The dashed lines on the field plot indicate the start and end of the
dispersive magnet.  The lower figures illustrate the evolution of the electron longitudinal
phase space.
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FIGURE 3. Parameter space for storage ring FEL oscillators.  Figs. 3a & 3b show the
parameter space for a single 15m undulator, while Figs. 3c & 3d describe an OK with a
pair of 7.5m undulators and a 1m dispersive magnet.  The upper plots illustrate the critical
gain and spread criteria for a particular system, and the lower plots show various critical
energy contours for different undulator magnetic field settings.  λu is presented in cm, and
B in kG.
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FIGURE 4. Parameter space for linac FEL oscillators.  Figs. 4a  & 4b show the parameter
space for a single 15m undulator, while Figs. 4c & 4d describe an OK with a pair of 7.5m
undulators and a 1m dispersive magnet.  The upper plots illustrate the critical gain and
spread criteria for a particular system, and the lower plots show various critical energy
contours for different undulator magnetic field settings.  λu is presented in cm, and B in
kG.
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FIGURE 5. Radiation field amplitude for a 15m FEL in a 17m cavity.  Mirror reflectances
are R1=R2=0.85.  Simulation was conducted with: E = 1.4 GeV, λu = 10 cm, B = 4.0 kG,
Ib = 20 mA.  Radiation wavelength is 52 nm.
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FIGURE 6. Radiation field amplitude for a 15m FEL in a 17m cavity.  Mirror
reflectances are R1=0.98, R2=1.0. Simulation was conducted with: E = 320 MeV,
λu = 10 cm, B = 2.5 kG, Ib = 2.5 x 1010 electrons.  Radiation wavelength is 475 nm.
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Note that in both the storage ring and linac cases, the optical klystron system allows for use of
beam energies roughly 200 MeV greater than would be possible with a single undulator of the
same length.  This in turn lowers the output radiation wavelength as well as the magnetic field
required to obtain such an output.

The contour plots for each electron source have qualifications that must be noted here.  In
the case of the storage ring, the beam must be operated at an energy greater than 1 GeV, and
possibly even greater than 1.5 GeV, to avoid beam decay via the Touschek effect [8].  Conversely,
the linac cannot be operated at an energy much greater than 350 MeV.  To reach higher energies,
the beam could be accelerated somewhat in the Cornell synchroton.  This, however, will increase
the beam emittance and reduce gain at some point as well.  Thus it is suggested that 400 MeV is the
maximum linac FEL energy.

We now choose particular storage ring and linac systems from these contours and perform
a high quality simulation of 2,000 electrons.  The radiation field amplitudes presented in Figs. 5 &
6 reach maximum values near unity, a result that is found to be independent of undulator or beam
parameters.  The cavity power at this saturation value then depends only on the undulator
parameter K and the FEL parameter ρ.  For both simulations conducted we find a peak of
approximately 6 Watts, an impressive amount of power in the tens of nm regime of our storage
ring FEL, and still a significant value for the visible linac FEL.  Examination of the OK contours
for each electron source reveals that even lower wavelengths can be obtained, and from a
theoretical standpoint these systems should achieve the same cavity power at their critical energies.
We cannot, however, simulate the complete OK oscillator using the one-dimensional FELSim
code, but the results indicate that wavelengths in the ultraviolet are within the reach of a Cornell
linac FEL.

Conclusions

Both the Cornell electron storage ring (operating at 1.4 – 1.8 GeV) and linear accelerator
(with an improved electron injector) make quite feasible electron sources for powerful sub-visible
wavelength FELs.  Using the FELSim simulation code, we have identified regions of the complete
parameter space of the beam-oscillator system in which a FEL oscillator could be constructed, and
have simulated attractive systems for both electron sources.  We find a storage ring FEL in the
vicinity of 50 nm and a linac FEL in the visible or SUV regime, with peak cavity powers of
approximately 6 Watts.  Use of an optical klystron is shown to allow for even lower wavelength
operation at a similar power output.
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Appendix

Table I. Storage ring and linac beam characteristics that contribute to the FEL parameter ρ.
σs is the r.m.s. bunch length, Ib is the bunch current in the case of the storage ring, and the
bunch intensity (in number of electrons) in the case of the linac, Ipk is the peak beam current,
σr is the r.m.s. beam radius, and E is the beam energy.  Ring values are produced for B = 4.0
kG, λu = 10 cm, and Ib = 20 mA.  Linac values for 2.5 kG, 10 cm, and 2.5 x 1010 particles per
bunch.

Storage Ring Linear Accelerator
Parameter

Dependencies Value at 1.4 GeV Dependencies Value at 0.3 GeV

σs
E 2 x 10-3 m Constant 3 x 10-3 m

Ipk σs
-1, Ib

3100 A Ib 4400 A

σr
E 2.5 x 10-4 m E-1/2, Ib 1.1 x 10-3 m

ρ See Page 2 1.2 x 10-3 See Page 2 1.8 x 10-3

Table II.  Storage ring and linac beam energy spread and emittance effective energy spread
contribution.  ε is the beam emittance, and E is the beam energy.  Emittance values are given
in mrad mm.

Storage Ring Linear Accelerator
Parameter

Dependencies Value at 1.4 GeV Dependencies Value at 0.3 GeV

(∆γ/γ)beam
E 1.7 x 10-4 E-1 2.2 x 10-3

ε E2 3.2 x 10-9 E-1, Ib
2 8.1 x 10-8

(∆γ/γ)eff
ε, E 3.6 x 10-4 ε, E 2.6 x 10-3
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