Deriving Second-Order Terms for the
Solenoid-Quadrupole Transport Map

Christopher D. Tennant
Department of Physics, Ithaca College, Ithaca, NY 14850

Abstract

Since the equations for the second-order terms for a combination solenoid-quadrupole ele-
ment have not been (as far as we can tell) published, these need to be derived. Starting
with the differential equations of motion for a particle under the influence of a solenoid-
quadrupole field, this paper derives the transport map and the associated second-order
terms.

Introduction

For the past several years, Wilson Synchrotron Laboratory has been writing its own
particle tracking subroutines. The collective code is known as BMAD, an acronym for Baby
Methodical Accelerator Design. Transfer maps offer a convenient and efficient formalism for
computer programs to track particles through the optics of CESR. For long term tracking in
CESR it becomes necessary to consider second-order terms of these transport maps. Since the
author is not aware of any previously published paper on this derivation, this paper derives
the second-order terms, starting with the differential equations of motion for a particle in a
solenoid-quadrupole field. The motivation behind this derivation is to incorporate the results
into BMAD for increased accuracy in tracking particles through CESR.

The Calculations

1. Elements of Solenoid-Quadrupole Transfer Matrix
The differential equations of motion for a particle under the influence of the combined
solenoid-quaudrople field are given by

' = —kix — kg (1)

y' = kiy + ko2’ (2)

where k; is the strength of the quadrupole and k; is the strength of the solenoid. We make
a guess of the solutions to be of the form

x = Asin(as) + B cos(as) + C'sinh(8s) + D cosh(fs) (3)

y = Esin(as) + F cos(as) + G sinh(3s) + H cosh(fs) (4)

where s is the length of the solenoid and « and [are to be determined.

Equations (3) and (4) can be simplified and written using complex notation as
r = Re[Je')

y = Re[Ke'"].

After taking the appropriate derivatives of the previous complex equations, plugging into
equations (1) and (2), and doing some algebra we are left to solve the quadratic

ot — o’k — kI =0

which readily gives

2 _ k2 + \/k* + 4k?

@ 2
p JEE - 4k2 — k2
_ 5 ,

Now that we have determined what « and [are, the constants in equations (3) and
(4) need to be determined. This is done by taking the appropriate derivatives of equations
(3) and (4) and plugging into equation (1). Gathering all terms to one side and gathering
coefficients of like functions, we recognize that the only way the expression can be zero is if
all the coefficients are zero. This leads to the following four equations

Ak — o®) = k,aF (5)
B(k; — 0?) = —k,aF
C(ki + %) = —k,8H
D(ky + B%) = —k,0G.

We also evaluate equations (3) and (4) and their first derivatives at zero to yield the additional
four equations

z(0)=B+D (6)
y(0)=F+H

7'(0) = Aa+ Cp

y'(0) = Ea + Gp.

We are now equipped with eight equations (equation sets (5) and (6)) and eight unknown
constants. Using the “Solve” capabilities of Mathematica, we are able to quickly solve for
the eight constants in terms of «, 3, ki, ks, and the initial conditions. The elements of the
solenoid-quadrupole transfer matrix are found by plugging these constants in equations (3)
and (4) giving

1
(02 + 59
(#lsh) =

(zlyo) = ﬁ
() = T

(z]30) = (82 + k1) cos(as) + (a® — k1) cosh(Bs)]

[a(ﬂQ + ky) sin(as) + Bk — o) sinh(ﬁs)]

[—ﬂ2a sin(as) + Ba? sinh(ﬂs)]

[— cos(as) + cosh(8s)]
and
(y[zo) = ([y0)

(ylzo) = —(z]yp)

1 2 2 2(122
(ylyo) = o [ﬂ (k1 — a®) cos(as) + o*(B* + k1) cosh(ﬂs)]
) = 1 (a2 — k) sin(as (ﬁQ + k) sinh(8s
W) = gy | sintas) + P s

The elements (z'|zg), («'|zf), (¥|yo), etc. are found by differentiating the above eight
matrix elements with respect to the solenoid length, s. The remaining elements of the matrix
are

1
(a2 +)
! !]‘

(z |330): m

(2|zo) = [—oz(ﬂ2 + ky) sin(as) + B(a® — k) sinh(ﬂs)]

[a2(ﬂ2 + k1) cos(as) + 8% (k1 — o?) cosh(ﬂs)]

(z'|yo) = (kskr [— cos(as) + cosh(8s)]

AN ks

(x |y0) - (042 +ﬂ2)
(4'|70) = (olyo)
(¥'|20) = —(=0|%0)

! = ! 2(a? — ky) sin(as a?(3? sinh(3s
(ymo—agigﬁakw(a k1) sin(as) + Bo? (8 + ki) sinh(3s)]

[asin(as) + B sinh(Fs)]

M) = — a? — ky) cos(as 2 cosh(fBs
wwa—“ﬂ+w)h k1) cos(as) + (82 + k1) cosh(Bs))]

The transfer matrix is then constructed in the following manner

(ylzo) (wlzo) (ylwo) (ylwo)
Y'[Yo)

5
o~
~—
—
QQ\
=
(=)

~—
—~~

II. Transfer Matrix Elements Including Fringe Field Effects

Thus far we have neglected the fringe field effects from the solenoid. To include those
effects, we simply matrix multiply the two fringe field matrices with the matrix (7) derived
in the previous section. The fringe field matrices are given by

1 00 0
0 1 & 0
=10 01 0
% 0 0 1

and its inverse. The solenoid-quadrupole transport map, including fringe field effects, is
given by

Ryj=f"-M-f (8)
The elements of R;; are given explicitly in Appendix A.
IT1I. Second-Order Terms of the Solenoid-Quadrupole Transport Map

To calculate the second-order terms we explicitly include the dependence of k£ and ks on
the energy zg = 2'.

_ ki(0)

kl N 1+ Tg (9)
ks . ks(())
1+ Tg

Since we are interested in only the second-order terms, we are allowed to expand equations
(9) to first order,

ks = ks(0)(1 — x¢).

Equation (10) is used in the preceding equations making R(xg) dependent on xg. There
is a slight twist though. The coordinates we have chosen for the analysis are (z, 2', y, v/, z,
z'). However we need to use the canonical coordinates (z, Py, y, Py, z, P,), where to first
order

Py = yl 1 + .Tf;)
P, =7
The coordinate transformation, (z,2’, ..., 2") = (x, Py, ..., P,), is done via N:
1 0 0 0 0 0
0 1+2z5 O 0 0 0
0 0 1 0 0 0
N= 0 0 0 I1+z¢ 0 O
0 0 0 0 1 0
0 0 0 0 01

The map R in (z, P,, ..., P,) coordinates is then
R(z¢) = N - R(zg) - N7

The T;jx, where k = 6, terms (“The 6-Terms”) are
OR;;(z6)

Tys = =%

8:1:6

zg=0

By integration, the remainder of the second-order terms, T;;j, where i = 5 (“The 5-Terms”),
are found. The necessary integration takes on the general form

Lty 2
Axs = ——/ (372(8) + x4(s)) ds (11)
2 Jo
where £ denotes the solenoid length and
z(s) = R' - z(0) (12)
R =M-}. (13)

Since we are interested in the particle path within the solenoid, we only include the first
fringe field in defining R’. Using equations (11) and (12) in (10) gives Az in the form

AJ)5 = T5jlc$j(0)$k (0)
All of the second-order terms are given in the BMAD code attached to this paper.

Conclusion

With a documented, systematic derivation of the second-order terms for the solenoid-
quadrupole transport map, we expect to improve the tracking accuracy of BMAD. Specifi-
cally, we should be able to do accurate long-term tracking.

Acknowledgments

I am pleased to acknowledge Dr. David Sagan of Cornell University who proposed this
Research Experience for Undergraduates. I would like to especially thank him for his unwa-
vering patience as he guided me through these calculations. I would also like to acknowledge
Kern Ormond of Cornell University for taking time away from writing his thesis to help me
in using IXTEX. This work was supported by the National Science Foundation REU grant
PHY-9731882 and research grant PHY-9809799.

Appendix A: Elements of the Solenoid-Quadrupole
Transport Map with Fringe Field Effects

Let t = o® + 32 = /k2 + 4k}

Rll

R12

R13

R14

R2 1
R22
R23

R24

Ry =
Rsy =

R4

Ry
R42

Rys

3 [(t+ 2k1) cos(as) + (¢ = 2kr) cosh(3s)]

% (k1 + 5%) sin(as) + B(ks — o) sinh(8s)]
2];:]21 [a(kl - ﬂQ) sin(ozs) + ﬁ(kl + 0{2) Slnh(ﬁs)]
% [— cos(as) + cosh(3s)]

;—tl [ks(—lﬁ + o?) ; thk + o) sin(as) + bl +) +ﬂ4k1(_k1 e sinh(fs)
Ry

Z—; [cos(as) — cosh(fs)]

ks [(ki+0”) (ki + 5

o l - sin(as) + T s1nh(ﬂ8)]
— Ry

—Ryy

% [(t — 2kq) cos(as) + (t + 2k;) cosh(fs)]
1[(=k +a?) | ki +5°) s

7 lT sin(as) + 3 h(3)]

—Ras
ks
2tk
1

4tk
Rs3

[a(—k1 + (%) sin(as) — Bk, + o?) sinh(ﬁs)]

[[4k1(k1 — 3% — E2(ky + B°) o) sin(as) + [4ki (k1 + o?) — E2(k, — o?)]B sinh(ﬁs)]

Appendix B: BMAD Code

subroutine sol_quad_calc (ks, k1, s_len, t)
use bmad_struct
implicit none

real ks, ks2, k1, s, ¢, snh, csh, s_len

real t(6,27), q_, r_, a_, b_

real dargl, alpha, alpha2, beta, beta2, f, q, r, a, b
real df, dalpha2, dalpha, dbeta2, dbeta, darg

real dC, dCsh, dS, dSnh, dq, dr, da, db

real ks3, fp, fm, dfm, dfp, df_f, ug

real sl1, s2, snhl, snh2, dsnhl, dsnh2, dsl, ds2

real coefl, coef2, dcoefl, dcoef2, ks4

real IS2, IC2, ISnh2, ICsh2, ISCsh, ICSnh
real ISC, ICCsh, ISSnh, ISnhCsh
real v1, v2, v3, v4, sll, s22, s3, ct, vp, vm

I Calc

ks2 = ks*x*2
ks3 = ks2 * ks
ks4 = ks2*ks2

f = sqrt(ks4 + 4xkl*x2)

ug = 1/ (4xf)

alpha2 = (f + ks2) / 2; alpha = sqrt(alpha2)
beta2 = (f - ks2) / 2; beta = sqrt(beta2)

S = sin(alpha*s_len)

C = cos(alphax*s_len)

Snh = sinh(beta*s_len)

Csh = cosh(beta*s_len)

q =1 + 2xkl - ks2

r =f - 2%kl + ks2

a =1 + 2%kl + ks2

b =f - 2%kl - ks2

fp = £ + 2xk1l

fm = £ - 2x%k1

df = -2 * (ksd4 + 2xk1xx2) / f

dalpha2 = df/2 - ks2
dalpha = (df/2 - ks2)/(2xalpha)

dbeta2 = ks2 + df/2
dbeta = (ks2 + df/2)/(2xbeta)
darg = s_len*dalpha
dargl = s_lenxdbeta

dC = -darg*S
dCsh = dargl*Snh
dS = darg*C

dSnh = dargl*Csh

dq = -2xk1 + 2%ks2 + df
dr = 2xkl - 2xks2 + df
da = -2xk1 - 2%ks2 + df
db = 2%kl + 2xks2 + df
dfp = df - 2xki

dfm = df + 2xki

df _f = -df/f
S1 = S * alpha
S2 = S / alpha

dS1 = dS * alpha + S * dalpha
dS2 = dS / alpha - S * dalpha / alpha2

Snhl = Snh * beta

Snh2 = Snh / beta

dSnhl = dSnh * beta + Snh * dbeta

dSnh2 = dSnh / beta - Snh * dbeta / beta2

coefl = ks2*r + 4xklxa
coef2 = ks2xq + 4*klxDb

dcoefl = -2xks2*r + ks2xdr - 4xkl*a + 4+*klx*xda
dcoef2 = -2xks2xq + ks2*dq - 4xklxb + 4xklxdb

t =0
call mat_unit(t(1:6,1:6), 6, 6)

t(1,1) = 2*%ug * (fpxC + fm*Csh)

t(1,2) = (2*ug/k1) * (q*S1 - r*Snhl)
t(1,3) = (ks*ug/kl) * (-bxS1 + a*Snhl)
t(1,4) = 4xugxks * (-C + Csh)

t(2,1) = -(ug/2) * (coef1xS2 + coef2*Snh2)
t(2,2) = t(1,1)

t(2,3) = ug*ks3 * (C - Csh)

t(2,4) =

ugxks * (a*S2 + b*Snh2)

t(3,1) = -t(2,4)

t(3,2) = -t(1,4)

t(3,3) = 2*%ug * (fm*C + fp*Csh)

t(3,4) = 2*ug * (r*S2 + g*Snh2)

t(4,1) = -t(2,3)

t(4,2) = -t(1,3)

t(4,3) = (ug/(2%k1)) * (-coef2xS1 + coefl*Snhl)

t(4,4) = t(3,3)

t(1,x16$) = t(1,1)*df_f + 2%ug*(fpxdC + Cxdfp + fm*dCsh + Cshxdfm)
t(1,x26%) = t(1,2)*df_f + (2xug/kl) * (dgq*S1 + g*dS1 - dr*Snhl - r*dSnhl)
t(1,x36%) = t(1,3)*df_f + (ks*ug/kl)*(-db*S1 - b*dS1 + daxSnhl + a*dSnhl)
t(1,x46%) = t(1,4)x(df_f - 2) + 4xks*ug*(-dC + dCsh)

t(2,x16%) = t(2,)*(df_f + 1) - &

(ug/2)*(dcoef1*52 + coef1*dS2 + dcoef2*Snh2 + coef2*dSnh2)

t(2,x26$%) = t(1,x16%)

t(2,x36%) = t(2,3)*(df_f - 2) + ks3*ug*(dC - dCsh)

t(2,x46%) = t(2,4)x(df_f - 1) + ug*ks*(da*S2 + a*dS2 + db*Snh2 + b*dSnh2)
t(3,x16$) = -t(2,x46%)

t(3,x26$) = -t(1,x46%)

t(3,x36%) = t(3,3)*df_f + 2*ugx(fm*dC + Cxdfm + fpxdCsh + Cshxdfp)
t(3,x46%) = t(3,4)x(df_f - 1) + 2%ug*(dr*S2 + r*dS2 + dq*Snh2 + g*dSnh2)
t(4,x168$) = -t(2,x36%)

t(4,x26%) = -t(1,x36%)

t(4,x36%) = t(4,3)x(df_f + 2) + &

(ug/ (2xk1))*(-dcoef2xS1 - coef2xdS1 + dcoefl*Snhl + coefl*dSnhl)
t(4,x46%) = t(3,x36%)

! 5 terms

ct = 8*ugx*x2

IS2

alpha*(alpha*s_len - S*C)/2

IC2 = (alpha*s_len + S*C)/(2*alpha)

ISnh2
ICsh2

ISCsh

betax(-beta*s_len + Snh*Csh)/2
(beta*s_len + Snhx*Csh)/(2xbeta)

(alpha - alpha*C*Csh + beta*S*Snh)/f

10

ICSnh = (-beta + beta*C*Csh + alpha*S*Snh)/f

ISC = (S*%x2)/(2*alpha)

ICCsh = (alpha*Csh*S + beta*CxSnh)/f

ISSnh = alpha*betax(beta*Csh*S - alphaxC*Snh)/f
ISnhCsh = (Snh#*%2)/(2x*beta)

V1 = alpha * (a*ISC + b*ISCsh)

V2 = beta * (a*ICSnh + b*ISnhCsh)

V3 = alpha * (r*ISC + g*ISCsh)

V4 = beta * (r*ICSnh + g*ISnhCsh)

Vp = £ % (IS2 - ISnh2) + (a*r*IC2 + b*r*ICCsh + a*q*ICCsh + b*q*ICsh2)/4
Vm = 2%k1*(IS2 + 2*xISSnh + ISnh2)

S11 = r*¥2xIC2 + 2%q*r*ICCsh + q**2xICsh2
S22 = a*x*2*xIC2 + 2*xb*axICCsh + b**2*xICsh?2
S3 = 4xks2 * (IS2 + 2%ISSnh + ISnh2)

t(5,x118) = -(ct/4)*(fp**2+IS2 - 2+ks4*ISSnh + fm**2xISnh2 + ks2xS22/4)
t(5,x128) = (ct/2)*(q*V1l - r*V2)

t(5,x138) = ((ct*ks)/4)*(-fm*xV1 + fp*V2 + fp*xV3 - fm*V4)

t(5,x14$) = ctxksx(vp + vm)

t(5,x228) = -(ct/4)*(S22 + S3)

t(5,x238) = -ctxks*(vp - vm)

t(5,x24%) = (ctxks)*(V3 - V1 + V4 - V2)

t(5,x338) = -(ct/4)*(fm*x*2xIS2 - 2xks4*ISSnh + fp**x2*ISnh2 + ks2*S511/4)
t(5,x348) = (ct/2)*(bxV3 - axV4)

t(5,x448) = -(ct/4)*(S3 + S11)

end subroutine

11

