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Abstract

It has been proposed that significant improvement can be made on the current supercon-
ducting accelerating cavities scheduled to be used for the linear accelerator project TESLA
by exploring a different type of cavity geometry. By allowing the profile line of the cell to be
constructed using only a series of arcs of conjugated circles, the equations lend themselves to
a straighforward transition to a more complicated model. Using the SuperLANS set of code
which numerically determines the cavity mode frequencies and their electromagnetic fields,
we can analyze different geometries and compare them with the current TESLA cavities.
Discussed here is the optimization of a model which uses four arcs to describe a TELSA-like
SC cavity. The results of this optimization have led us to believe that the analysis of a more
complicated model using eight or perhaps ten arcs to depict the profile line of a cell is a
worthwhile task.

Introduction

In deciding on a cell shape for a SC accelerating structure it is important to take into
account the limiting surface fields of the cavity. A convenient quantity to look to minimize
in cavity geometry optimization is the ratio of maximal electric or magnetic field strength
on the surface of the cell to the accelerating electric field achievable in the given cell:
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Here AW is the energy gain (in volts) obtained at the cell length L equal to half wavelength.
We assume that the operating mode of oscillations is m-mode. We will use for comparison
with calculated fields, known values of the above ratios for the TESLA accelerating structure
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We introduce for the purpose of comparison normalized maximal electric and magnetic fields:
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so that for regular TESLA cells,
e=1 h=1. (4)

The result of the optimization of these two normalized parameters should be a function A(e)
such that for any given normalized electric field e one can easily identify the minimal nor-
malized magnetic field h. The curve representing this function also represents the symmetric



condition: for any given normalized magnetic field h there exists the minimal normalized
electric field e.

SuperLANS: Input

Using the SuperLANS set of code, we are going to optimize the geometry of an infinite,
homogeneous TESLA-like cavity structure. The symmetry of the fields of the accelerating
mode for the geometry (about the z = 0 axis) and the usual axial symmetry of the cavity
enables us to input only one quarter of the structure (Fig. 1). We labeled the left axis of
symmetry (height denoted by Req) with an electric wall boundary condition (IB = 2, even
mode) and the right edge of the geometry (height denoted by Rbp) with a magnetic wall
boundary condition (IB = 3). We take the beam pipe radius to be the value for the TESLA
beam pipe, or 35 mm. The length of the geometry is 1/A (for the TMy;9 mode) and in this
case of a 1300 MHz fundamental frequency, this was equal to 57.652 mm.

Previously [2], we have analyzed this problem using a simple, two-arc model for the cavity
geometry. Also, a few points for the h(e) plot have already been calculated in [3], where a
more complicated geometry (using six arcs to describe a TESLA-like SC cavity) was used.
We choose to attempt to improve the TESLA cavities by modeling the shape of the half-cell
using only a series of conjugated arcs of circles each with a different angle and radius. The
advantage of doing as such is the simplicity of the equations and a straightforward transition,
if necessary, to a more detailed description of the shape - with a larger number of arcs. As
for a stepwise change of curvature using the circles, it should be noted that this does not
lead to sharp changes of field along the profile line of the cell.

In the model discussed here, the metal surface of the cavity consists geometrically of four
arcs, the first (from the right) with radius R1, the second with radius R2, and so on. The
center of the first arc is always located above the far right edge of the structure at a height
equal to Rbp 4+ R1 and the center of the fourth and last arc is always located on the z =0
axis at a height equal to Req - R4. The angle ¢ that R4 makes with the z = 0 axis is labeled
in Fig. 1. The angle that R3 makes with R4 is called 1, and is also labeled in Fig. 1. R2
sweeps out an angle § as an extension of R3 down to where it meets the center of the first
arc. To require that R2 and R3 make a straight line gives rise to the condition

a+B=¢+. (5)
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FIGURE 1. Geometry for four-arc model of TESLA-like cavity structure.



So, we have in this geometry eight variables (R1, R2, R3, R4, «, (3, ¢, and ¢) and there are
three constraints:

1) length of half cell is \/4

Na+p=0+79¢

3) fundamental frequency is 1300 MHz
Now we see that there are five free variables in this geometry (for a given beam pipe radius).
Making «, 3, ¢, R1, and R4 the independent variables, we selected Req to produce
12999 < f < 1300.1, and R2 and R3 are determined in a program written in Mathcad as
follows:

Using the first constraint we can write

% = R4 -sin¢ + [sin(y) + ¢) — sin¢] + R2 - [sin(a+ B) —sina] + R1 - sina.

R2:A/4—(A-R1)—§-R2)—(D-R4)’ ©

where A = sin «, B = sin(a + ) — sin, C = sin(y) + ¢), and D = sin ¢.

The cavity geometry is also such that
Req—Rbp = R4-(1—cos ¢)+R3-[cos ¢ — cos(¥ + ¢)]+R2-[cosa — cos(a + B)]+R1-(1—cos ).

Letting @ =1 — cos, S = cosa — cos(a + ), T = cos ¢ — cos(¢) + ¢), and W =1 — cos @,
we can write

A4—(A-R1) = (C-R2) - (D- R4)

Req—Rbsz-Rl-i-S-[ ]+T-R3+W-R4.

Or rearranging,

(Req — Rbp) — (£23) — (Q - £2) - R1— (W — £2) - R4

R3 = . (7)

Since (from the second condition) ¢ = a +  — ¢, the above equations (6 and 7) determine
R2 and R3 in terms of the five independent variables.

The written Mathcad program recalculates each variable for any change in «, 3, ¢, R1,
or R4 and the output is a geometry file to be read by the SuperLANS code. This Mathcad
program also gives a graphical display of the given cell geometry (Fig. 1).

SuperLANS: Output

The frequency is calculated by the SuperLANS code using the geometry file that was
written in Mathcad, and values of Req were searched for each set of values for the five
independent variables to obtain the desired frequency of 1300 MHz. After finding the ap-
propriate equatorial radius for a given set of the five independent variables we can record

4



the acceleration rate and maximum surface fields, which are a part of the output from the
SuperLANS code.

Below (Fig. 2) is a graph (output by the routine ’geo_c’) of the mesh structure that
was input into the SuperLANS code for one particular set of values for the five independent
variables. The mesh structure is recalculated in the Mathcad program with any change of
geometric variables, although occasionally some additional adjustment is necessary.
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FIGURE 2. Mesh structure specified by a geometry file possessing the following set of
variables: o = 9.5°,8 = 94.8°,¢ = 50.0°, R1 = 9.3 mm, R4 = 45.0 mm, Req = 100.654

mim.

We were very careful to make the mesh structure homogeneous, especially near the iris
of the cavity (where the surface electric field would be maximal) in order to obtain reliably
accurate values for the accelerating electric field and the maximal surface fields. Our input
mesh structure is not perfectly homogeneous because we did not desire to know e or h
beyond three decimal places, however this homogeneity rapidly becomes more important



with increased desired accuracy of the field calculations.

Results

The search for the minimum of a function of five variables is time consuming and the
minima found may be local ones. Our calculations gave the dependency shown below (Fig. 3)
for the normalized maximal field ratios.
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FIGURE 3. Normalized maximal field plane, h(e). 1 — 2-arc model, 2 — 4-arc model, 3
— 6-arc model.

The solid line connects the calculated minima found for four different values of e using the
four-arc model depicted above. The dotted line above the solid curve shows the dependency
of h on e for the simpler, two-arc model [2] and the dotted curve below the solid one, shows
the minimum values of h found for three different values of e for the more complex, six-arc
model of a TESLA-like cavity, which is described in [3]. The purpose of optimizing this
intermediate four-arc model was to see exactly where the function h(e) corresponding to this
model, fell between the curves found from calculations using the simpler two-arc model and
the more complex six-arc model. Since the six-arc model of a TESLA-like accelerating section
gave such great improvement in optimization over the two-arc model, it seemed worthwhile to
explore a more complex model. However, this is not something you would want to jump into
because each additional arc that is added on to a model of the cavity geometry adds two
new independent variables to the optimization problem, so optimization quickly becomes



more cumbersome. It was therefore logical to look at a model that was intermediate in
complexity, in order to try and understand if this function, h(e) was converging to a certain
set of values and if optimizing a cavity geometry of greater complexity than six arcs is a
worthwhile task. That is, if we can improve the existing geometry [1] substantially, it would
make sense to optimize a more complicated model because it could save much money in
TESLA cavity production. From the results that we have calculated there does not appear
to be any convergence being approached. This implies that if a more complex model is
approached for optimization, while it shall prove to be considerably more time consuming
than previous models, a significant decrease in minimum values of h for any value of e will
be observed.

Table 1 (below) shows the results of optimization for the three different models of a
TESLA-like SC cavity geometry that have been analyzed to date. The arcs of the four-arc
model and the two-arc model have been divided to be able to compare these geometries with
that of the six-arc situation. The results of optimization shown in this table are for e = 1
for the four and six-arcs models, but for the two-arc model the results shown are for
e = 1.049. This reflects the fact that using the most simple model of the cavity geometry
one can create using only a series of conjugated arcs (2-arc model), the current TESLA value
of the ratio of maximum surface electric field to accelerating electric field is not achievable.

The lowest maximum electric field ratio we were able to achieve using the two-arc model was
e = 1.049.

TABLE 1. Optimal geometry found for e = 1.0 (4 and 6-arc model) and e = 1.049 (2-arc
model). Radii in millimeters.

2-arcs 4-arcs 6-arcs

R1 23.1 22.0 8.0
R2 23.1 22.0 11.68
R3 23.1 28.59 23.2

R4 | 35233 | 30.073 | 18.764
R5 | 35.233 | 30.073 | 56.970
R6 | 35.233 | 36.0 50.3
a | 98.77°/3 [ 48.372°/2 | 32.2°
B [ 98.77°/3 ] 48.372°/2 | 19.86°
v [987°/3| 50.0° | 55.65°
¢ | 98.7°/3 | 48.372°/2 | 25.0°
Y

0

98.7°/3 | 48.372°/2 | 30.0°
98.7°/3 | 50.0°/2 | 51.81°

Note that the results of these optimizations are not unique to the frequency of 1300 MHz
or to the beam pipe radius used (35 mm). That is, because the values of e and h depend
only on the shape of the cavity and not on the dimensions of the cell, the results obtained by
optimization can be used at any different operating frequency. However, for different ratios
of beam pipe radius to wavelength, the optimization curves will be different.

Below (Fig. 4) is a view of the three different optimized cavity profiles as described in
Table 1. The two-arc model of the geometry is optimized for e = 1.049 (discussed above)



and has a value for h equal to 1.095. The four-arc model depicted here is optimized for e =
1.0 and has for a minimum value, h = 1.132. The geometry rendered below by using a series
of six conjugated arcs is that which gave a minimum value h = .9455 for e = 1.0.
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FIGURE 4. Shape of optimized TESLA-like cavities for stated values of e. 1 — current
shape, 2 — 2-arc model (e = 1.049), 3 — 4-arc model (e = 1.0), 4 — 4-arc model (e =
1.05), 5 — 6-arc model (e = 1.0).

Note that as the models progress from two arcs to six arcs, the outward bulge becomes
more apparent. There is no reason that we should not expect this trend to continue. That
is, we suspect that the optimized cell (for e = 1.0) using an 8-arc model will be even closer
to touching the adjacent cell than the 6-arc model is. This suggests an alternate method for
finding an improvement over the current TESLA cavities. Instead of slowly adding more arcs
in and making models more and more complicated (which may just find better and better
values for the function A(e)), perhaps it would be more efficient to start from the other side.
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That is, create a cavity with as many arcs as necessary to make adjacent cavities as close to
touching as possible. Optimize a cavity of this geometry (at this rate, the improvement may
be tremendous) and then take other figures of merit into account, making the area enclosed
by the half-cell smaller, if necessary.

Cell to cell coupling is defined by a coupling coefficient k:

. f'/r_fo
=T ®)

The value of k reflects the velocity of power flow from one cell to the adjacent one. The
values of the coupling coefficents for each of the found minima are shown below (Table 2).

k

TABLE 2. Coupling coefficient corresponding to optimized points found in each model.

2-arcs 4-arcs 6-arcs
e 1.07 | 1.057 | 1.052 | 1.05 | 1.1 | 1.07 | 1.05 1.0 1.1 1.0 | .963
h 1.01 | 1.044 | 1.072 | 1.092 | .961 | .982 | 1.023 | 1.132 | .9166 | .9455 | .968
k(%) | 1.28 | 1.13 | 1.03 98 |1.68|1.52 | 1.34 .93 2.27 | 2.02 | 1.89

Conclusions

From the function h(e) that we found, we can say that the next logical step towards
improving the shape of a TESLA-like accelerating cavity created using only a series of con-
jugated arcs to represent the profile line, is to either optimize a model with more arcs or
analyze the geometry that is created by increasing the length of the profile line as much as
possible without the cells touching. Due to the drastic improvement in optimized values (the
function h(e)) when going from the four-arc to the six-arc model, we draw the rational con-
clusion that the gain in optimization will be worth the lengthy and slow task of minimizing
the field ratios for a more complicated model.
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