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Abstract

In this paper we explore a variety of different methods for robust error estimations while
doing bayesian curve fitting. This exploration is done specifically with the example of
Lattice QCD simulations. We show that quadratic approximations, numerical integration,
and bootstrap methods all give similar results for the values and errors on parameters and
examine some advantages/disadvantages of each method.

1. Introduction

One of the important links between taking data from experiment and establishing the
parameters or validity of a theory is being able to fit the theory to the data. This procedure
typically involves two pieces. First, one needs a model. Secondly, one then needs to find the
parameters of that model that fit the data the best. In this paper, we will discuss the latter
of these two steps.

A central concern is calculating the errors that are associated with these values. This
is especially important in simulations where knowing the errors is integral in understanding
how close your simulation has come to reproducing (or predicting) the empirical results. One
example of this is in numerical QCD. In QCD simulations, the result is a series of gauge field
configurations that result from a metropolis algorithm. Various quantities are computed
from these configurations and the results are then averaged and taken as data. In this paper
we examine “meson propagators” which are modeled by a function of the form

G(t) = 3 ate ™" 1)

where the E; are energies and the a; are the amplitudes. In Section 2 we will discuss
three different methods of establishing parameters and their errors. These methods will
include calculating the values by numerical integration, bootstrap, and using a gaussian
approximation. In Section 3 we will compare these three methods.

2. Error Analysis

Given a set of data D, we would like to find the most probable parameters 1" for our
model. In other words, we want to maximize the probability P(7T|D). A standard approach

is to minimize the chi squared between the data and a given theory: x* =¥, WI;QGTW
The problem with this approach is that our theory has an infinite number of para(r;neters.
Since we are fitting to an energy spectrum, there are an infinite number of energy levels.
Yet, you only have a finite amount of data to fit with. If the infinite number of energies

were relevant in fitting the problem, the problem would not be tractable. For our specific



problem, though, we know a priori that only a finite number of energies are relevant. This is
because we know that all the a; are approximately the same, but the E; grow steadily with
1 . Nonetheless, there are two pieces of information that we don’t know a priori. We don’t
know how many parameters are going to be needed to fit the data. Secondly, we don’t know
how the effect of the terms that aren’t fit will effect the uncertainty of the final errors.

One way to resolve these two issues is to calculate P(T'|D) from basic probability theory
[1]. Bayes rule states that the probability of obtaining theory T given data D is

p(r/p) — PODPX)
P(D)

We know that P(D|T) is equal to e~2X". (This is the basis of the standard method for
minimizing x? ). The P(D) is simply a normalization constant that can be ignored since
it is independent of 7. The factor P(T) is the probability that the theory is correct before
considering the data. In Bayesian analysis this is called the prior probability, because it is
here we were introduce information that we have a priori about the probability of different
theories. The only information that we have about the distribution of our parameters is
its average value as well as a guess at its standard deviation. Given these values, it makes
sense to choose a gaussian distribution as our prior. Now let us take the logarithm of this
probability distribution to create a

2
2 2 (W —win)

Xaug = Xoia + > T2

where w is the prior average and o2 is the standard deviation of each of your parameters. To

calculate the value of some parameter E; one computes the average and standard deviation

of the energy with respect to P(T|D) o e Xaus/2 by calculating
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(2)

op, = (E1) — (E1)*.

These integrals are impossible to evaluate analytically — they are high dimensional inte-
grals and they have complicated integrands. I have explored three approaches for approxi-
mating these integrals.

The first of these methods is to calculate the integral exactly using numerical techniques.
I did this with the use of a Metropolis algorithm. The Metropolis algorithm starts with
an initial set of parameters; I used an estimate of the minimum of Xgug' From this point,
it proceeds to try to take a step in the parameter space. If this step lowers the value of
chi squared it takes the step. On the other hand, if it increases the value it only takes the
step with probability e~0Xaug/2  This algorithm generates random points in parameter space
that have probability density proportional to e Xaug/2_ The averages in equation 2 are then
straight averages of the metropolis results. The metropolis algorithm is halted when the
errors stop growing as the square root of the bin size.

The second method that we utilized was to assume that Xﬁug is approximately quadratic
in the parameters in the region about the minimum of Xﬁug . This makes the integrals in
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equation 2 into gaussians and allows us to compute them analytically. This results in being
able to calculate any function f of the parameters with the formulas

(f) = f(w?)
of of
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where w* is the minimum of x7,, . [2]

Our third approach uses a bootstrap method. The minimization is repeated for a large
number of bootstrapped copies of the data and the priors. The different minimums are
distributed in parameter space approximately as P(7'|D) Then to get the distribution from
this value, we bootstrap both the data and the priors that are used in the calculation of Xiug .
Bootstrapping the data is done by creating a new set of configurations by choosing a random
set (with replacement) of the same size from the old set of configurations. The priors are
bootstrapped by choosing a new mean for the prior randomly from a gaussian distribution
that has means and standard deviations taken from the original prior. Note that in a typical
bootstrap you only bootstrap the data. When you are using Bayesian analysis, though, it is
important that you bootstrap the priors in order to come to correct conclusions.

The one limitation of the bootstrap approach is that it tends to allow exponentials to
ocassionally drop out of the fit. The reason that this happens is that the combination of a
low prior and a large o can allow the value of an amplitude to touch 0 without harming x?
significantly. Since we are testing how many exponentials we need to fit, we will be fitting
more exponentials then we need to and consequently x? is also not significantly altered when
an exponential drops out. Therefore sometimes the minimization will find some amplitude
of 0. In these cases, we have eliminated these outliers from our error calculations as it is not
an accurate representation of the error on this parameter.

3. Comparison

The actual data that we used to explore these different methods is the calculation of the
mass of the Upsilon particle. This data was taken from a lattice gauge simulation. The
model that was utilized is the one mentioned in equation 1. The specific parameterization
we used to fit the data was one where

Gie{t.n} = €" Giefnt1.2n) = 627:115"
This was defined to prevent the amplitudes from going negative as well as keeping the energies
appropriately ordered. We fit with n € {4,5,6} which corresponds to fitting with four, five,
or six exponentials. For each of these, we ran the metropolis as well as the bootstrap until
they had converged.

The first thing to examine is how closely the different methods agree. The different
results that each method gets for the parameters and errors are demonstrated in figure 1.
This figure is a plot of the ten parameters (five energy parameters, five amplitudes) associated
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FIGURE 1. Comparison of Quadratic Approximation, Metropolis, Bootstrap for a fit of
ten parameters. Each bunch of three is the average value and standard deviation of one
parameter for the three methods in the above order.

with fitting n = 5 exponentials. Each group of three points represents one parameter with
average values and errors for the quadratic approximation, the metropolis, and the bootstrap
repsectively. Notice that for the first two energies and amplitudes the values and errors are
almost identical.

Moreover, not only are the actual values that result fairly close, but the distributions also
are extremely similar. In figure 2 | there is the distribution for the different energy levels
and amplitudes with all three different methods. The line represents the curve from the
quadratic approximation, the points represent the metropolis and the histogram represents
the values from the bootstrap methods. Notice for the lower energy and amplitudes, the
three distributions are very similar. This is especially true of the bootstrap and metropolis
as they both track the tail of the distribution. For the higher energies and amplitudes the
values are not as well determined. In this case, there is still correspondence between the
different methods, but it is not as well correlated. This is effectively because these values have
more room to wander without effecting chi squared significantly. Nonetheless we again have
a situation where the bootstrap and metropolis agree significantly better then the curvature
values.

The reason for this is that the errors based on curvature depend on the assumption that
the nature of the integral at its minimum is well approximated by a quadratic function. We
can demonstrate that in a number of cases this approximation is not valid. If this approx-
imation were valid we could examine any two dimensional projection and that projection
should look elliptical. Figure 3 demonstrates the contours that contain 66% and 95% of the
points that a converged metropolis visited. This is for the 2 dimensional projection into the
3’rd energy parameter and 4’th amplitude parameter. The center of the box is the minimum
of xgug and the box is scaled so that it is three o in each direction where the o is calculated
by the local quadrature. This structure should mirror the actual structure of the integral.
The quadratic approximately is clearly not a valid one in this case.

Another thing to be cognizant of is the metropolis takes a significant time to converge
because it is attempting to calculate a high dimensional integral. This is because the high
dimensional structure that results appears to have a variety of ridges that can cause the
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FIGURE 3. 2d projection of metropolis for 66% and 95% contours.




metropolis to get stuck for an extended period of time. In general, the less well constrained
by the data a parameter tends to be, the more likely it is that the structure in that dimension
is going to be highly non-regular and cause problems for the metropolis. For n = 4 we began
seeing convergence at approximately 1,000,000 points. It took on the order of 6,000,000 for
n = 5 to converge and approximately 50,000,000 for n = 6 to converge. This is in sharp
contrast to the bootstrap algorithm which scales better. This is because it appears that
1000 bootstraps successfully converges the values no matter how many exponentials there
are. The reason for this significant distinction between these two methods is the bootstrap
method is getting independent values every iteration, whereas in the metropolis algorithm
the values are related to each other. Of course, the method that scales the best is utilizing
the gaussian approximation as this only requires one run of the minimization routine in order
to achieve the desired result.

Overall, we find that the errors calculated in different manners from bayesian analysis
seem to match each other fairly closely. This is especially true of the bootstrap and the
metropolis algorithms. In general, these two methods have more credence then the utilization
of the guassian approximation because they do not need to assume that the value is quadratic.
In the cases where the bootstrap and metropolis disagree, it is not clear which error estimate
ought to be used. There are different approximations that go into each estimator and both
sets of approximations seem valid. In general, it seems to make sense to use the bootstrap
method as this method can be run faster.

Acknowledgments

I am pleased to acknowledge Professor Lepage of Cornell University for guiding me in the
work on this Research Experience for Undergraduates project. This work was supported by
the National Science Foundation REU grant PHY-0097595 and research grant PHY-9809799.

Footnotes and References

1. Sivia, D. S. Data Analysis: A Bayesian Tutorial. Oxford: Clarendon Press, 1996.
2. G.P. Lepage (private communication)



