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Abstract

The goal of this project is to study particle distributions within a bunch and understand
the changes of the equilibrium distribution as a function of time. A program, Longitudinal
Numerical Calculations of a Single Bunch (LNCSB), was previously written by Mike Billing
and Matthew Stedinger to calculate beam dynamics for a single bunch of particles at high
and low currents. As a part of this project, subroutines have been added which convert 7-¢
coordinates to A-¢ coordinates and track a single bunch throughout phase space, in hopes
of studying various aspects of longitudinal beam motion.

Introduction

In CESR, circulating beams of electrons and positrons emit synchrotron radiation. Syn-
chrotron radiation takes the form of X-rays that are emitted tangential to the orbit of the
beam. At low beam currents, such X-ray emission is a main source of energy loss to the par-
ticle bunches. CESR then relies on the RF accelerating system to replenish energy that has
been lost. If the RF acceleration does not put in the right amount of energy, the particles’
paths curve off of the circular orbit and change the particles’ arrival times at the RF system
on the next turn - ultimately causing the particles to oscillate in time and energy. At high
beam currents, the beam’s electro-magnetic fields react with vacuum chamber discontinu-
ities along CESR, causing energy loss in the particle bunches. Therefore, the effect of “wake
fields” is one of the areas that needs to be studied.

This project on longitudinal beam motion studies the changes of the equilibrium distri-
bution of particles as a function of time. In some instances, the distribution is affected by
wake fields. As a bunch approaches a discontinuity in the beam pipe’s wall, the electric and
magnetic fields traveling with the beam scatter at the discontinuity and the front of the
bunch loses energy. While the bunch moves along, the energy retreats into the discontinuity,
possibly reflecting back to the beam path, thus adding energy to the end of the bunch (later
in time). This idea of energy loss and gain also corresponds to two other topics that should
be investigated. Ome topic is how the distribution of a bunch of particles changes due to
wake fields. The other topic studies what exactly happens to particles inside of the bunch
and how they behave when the distribution is perturbed.

Previous data has noted that perturbed distributions come back to equilibrium much
more rapidly than expected. A main motivation for studying longitudinal beam motion is to
understand why such an equilibrium recovery rate discrepancy occurs. The most important
aspect of this project is using Vlassov’s Equation, which is applicable to particle interactions
and phase space. Therefore, different derivations of this equation were added to the Fortran
code, Longitudinal Numerical Calculations of a Single Bunch (LNCSB) and its subroutines.

Vlassov’s Equation

Vlassov’s equation is to be solved as an integral in the code. There are a number of ele-



ments in Vlassov’s equation that are not expressed explicitly in order to do the calculations.
Below is Vlassov’s equation in an adequate beginning form for studying longitudinal beam
motion.
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Where g(7) = Vé )T Y the change in delta over time. The term e indicates the charge, U
denotes the energy lost by the ring each time around, Fj is the energy of the machine (set at
5.5 GEV), and Tj represents the time it takes to travel around the ring (2.56 microseconds).
In order to use this equation, some terms need to be defined first (noting that Vip is the
radio frequency voltage and Vo refers to the voltage of higher order mode):
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(Recall from previous discussion that wake field parameterization is important to studying
longitudinal beam motion. This equation for ,(7) is used to parameterize the wake fields.)
Angular frequency is represented by wgrr. R, L, C stand for the resistance, inductance, and
capacitance, respectively, of CESR. The factor, N,, is defined as the number of particles in
a bunch.

One obstacle that had to be dealt with while writing the code was that all these equations
are in terms of 7 and 4. It is known that for typical parameters in Vlassov’s equation the
time dependent solutions appear as particles in phase space rotating about some particular
phase space point. This suggests that radial (action-angle) coordinates would be preferable
for solving this problem. Thus, a subroutine was put into the code that converts all the 7,0
coordinates into action-angle (A,$) coordinates . Once the conversion to A and ¢ is made,
Vlassov’s equation needs to be rewritten in the new coordinates.

.2

0= 86_{ + %sinqﬁcosd)%—g(ﬂ\/ﬂjsmqﬁl g—j; + [_O[S;; ¢ + \/ﬁ_Ljosqbg(T) g—f; (1)
From this point, let
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such that Vlassov’s equation is now in its optimal form,
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The term v,4 represents radial velocity of the distribution in phase space, whereas vy4 repre-
sents angular velocity.
After some manipulation, equation (1) may be written in integral form as,
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where Af is the fraction of particles in the distribution in the cell centered at (Ag,dy).
The values of A f computed for all cells is then added to the present distribution f to obtain
the distribution a time At later. The calculation proceeds by sequentially stepping forward
in time by these steps At. This gives the time evolution of f.

The code has been written so that all of these calculations are over a limited A,¢ region in
phase space where the particles exist. Because we will calculate a change in the distribution
function, f, in cells in phase space we must choose cell sizes in 7,0 and A,¢ which are small
compared to the relative dimensions over which we expect the distribution function to vary.
The sizes are determined near the center about which the particle distribution rotates. Since
we also need the distribution, in one cell, to change in each time step by a fraction (less than
one) of its contents, the 7-6 coordinates will require many more time steps to sweep through
the cells far from the center of rotation. However, in the A-¢ coordinates, we only need a
step in time which is equivalent to a certain fraction of the cell size in the angle ¢, since
the distribution is rotating. This substantially reduces the number of calculations required
compared to 7,0 calculations.

Longitudinal Numerical Calculations for a Single Bunch

The Fortran77 code, Longitudinal Numerical Calculations for a Single Bunch (LNCSB),
was written prior to its use in exploring Longitudinal Beam Motion. All previous calculations
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were done without an emphasis on time. Several subroutines were added to the program to
deal with the 7-9, A-¢ conversions. A vital addition to the code is a subroutine which maps
particles throughout phase space in 7,0 then proceeds to convert the particles’ position to
A-¢ coordinates.

First the code goes through all of phase space and maps through each bin in 7-6 co-
ordinates. Once the iterations are complete, LNCSB is written to go back through phase
space, along different bins which correspond to A-¢. Likewise, A-¢ coordinates can easily
be converted back into 7-§ coordinates. Next there is a subroutine which initializes f(7,d)
and finds a fixed point of the equilibrium distribution. From this stage in the code, the fixed
point at all (7,0) is mapped into correlating (A,¢) points to be used as the initial phase
space density. Next, the code goes through iterations to be done over time to calculate the
time evolution of the particle distribution. In this part of the code, the -6 coordinates are
needed from the preceding solution f(7,) in order to compute (7). The coefficients a and
b were used to find the best fit quadratic polynomial along the grid at each point 7y for the
following functions,
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Once all these necessary calculations are done, the next step is to solve for hA; and ho
which are integrands for computing A f later on in the code. Here is where one should look
back to equations (2) and (3) for the v4 and vy calculations. Therefore, let
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and
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These functions are used to solve for ¢ and d coefficients which, like the previous a and
b coefficients, help calculate the best fit quadratic polynomials.
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Once these calculations are complete, calculations for A f begin, for one time step At.

Conclusions

The initial phase space distribution has been computed. At this point, the code has
been written and is being debugged to calculate the time evolution of f and ultimately solve



Vlassov’s equation as an integral.
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