The New Beam Position Monitoring System
Architecture, Algorithms, and Interface

Jeffrey R. Moffitt

The Department of Physics, The College of Wooster
Wooster, Ohio, 44691

Abstract

With the addition of several new hardware components such as a Digital Signal Processor,
the new Beam Position Monitoring system will be able to offer a wider range of functionality
than the old system. However, this new hardware requires a certain amount of software
to provide these new abilities. The aim of this project was to develop the C algorithms,
memory and control architecture, and the FORTRAN interface that will direct the hardware
in providing this new functionality. To date preliminary versions of each of these have been
completed.

Introduction

The fundamental physics behind beam position monitoring involves the collection and
monitoring of signals induced on the beam pipe by the passing charged particle beam. In the
Cornell Electron-positron Storage Ring the induced signals are picked up by sets of capacitor
pickups known as beam buttons. In each Beam Position Monitor four beam buttons are
located radially around the beam pipe. As the beam is displaced from the center of the pipe,
the signals increase/decrease linearly for small perturbations. By monitoring the relative
intensities of each of these signals, the amount of displacement from the center in both the
horizontal and vertical directions can be calculated. Also, by summing the intensities of all
of the signals the current of the passing bunch can be calculated. [1]

In the old BPM system the signal from each beam button was transferred to a BPM
processor by a system of relays. This processor recorded the signals from each button and
then passed these signals to the control system for position calculation. Unfortunately, in
this system the signal from only one beam button at a time could be collected, removing
the possibility of single turn monitoring. Also, by transferring the signal data back to the
control system, the burden of processing that data fell onto the control system.

The new system, however, will not necessarily relay the sampled button signals back to
the control system. The new system has the hardware, i.e. the DSP, to allow the signals
to be processed onboard each individual BPM. [2] Not only will this take the processing
burden off of the control system, but it will allow each BPM to perform several new tasks.
The first of which is a series of self-calibrations, which will account for inherent differences
in the digital hardware of each channel, such as pedestal values, slight signal delays between
individual channels, and slight differences in the amplification produced by each gain setting.
See figure 1. Also, onboard processing will not only allow the BPM to calculate the position
and current of a bunch for each turn, but it will allow it to do calculations with these
positions.

The hardware alone is not enough to create this new functionality in the BPM. Software
is needed to take advantage of the capabilities of the hardware. The aim of this project



was to develop the software needed to run the new BPMs. For clarity the development
of this software and the final code produced will be presented here in three main sections:
Architecture, which discusses the basic memory framework and control system access frame-
work, Algorithms, which discusses the code that implements these functions on the DSP,
and Interface, which presents the work that has been done to create a user interface for the
system and an interface between external data files and the BPM.

280

Inherent Ch 1 Del gl
eretl anne elays o0

Y
F
£
180

500 F g -
0" S ;‘A‘ 4

0 E——— ~ &N

-1000 E— 50 -w .
E Global Delays

-1500 = 0 T T T T

2000 I R B R R B 500 700 00 1100 1300 1500
0 1 2 3

Time fns) Time Delay

FIGURE 1. These figures illustrate some of the aspects of the hardware that must be
calibrated. The figure on the left illustrates the effects of the inherent delays of each channel.
If these delays were not accounted for, then even if the global delays were positioned on the
peak of the signal, each channel might not be. The figure on the right is data collected by
the BPM when attached to a pulse generator. The shoulders of the pulse should register
zero; however, the pedestal value of the channel gives the pulse a DC offset.

Architecture

The design process of the memory and control system architecture was unique from the
creation of the function algorithms in that there were less constraints on final form of the
memory and control structures than the code of the algorithms; however, there were still
two major concerns that were considered when these two systems were designed. The first
was external access to variable values by the control system for the purpose of collecting
processed data and for controlling the function of the DSP. The second was efficient use
of the limited storage space for not only the actual values of the variables, but the limited
memory space for the actual program.

Memory Structure

In the current version of the C code of the DSP, CoreV7, the internal variables are
all contained within 7 separate memory structures, which are defined in a sole header file,
Bpm_config.h. The variables are grouped into structures depending on their role in the code
and the level of access that will be needed from the control system. Table 1 contains all
of the memory structures, the times in which the control system will access these memory
structures, and the functions of the member variables of these structures. Out of these
7 memory structures, only 2 structures contain variables that need to be accessed by the
control system during normal operation. The other 5 structures contain variables that will
most likely never be changed after initialization. For example the Host structure holds the
name of the specific BPM element, the names of its vector, packet, and timing nodes, and



values such as its data base index. These variables will be set once during initialization
of the DSP and then will never be changed during the running of the BPM. The other
4 structures which will only be accessed during initialization contain variables that control
the operation of most of the algorithms. Once optimized, these variables will most likely
remain unchanged; however, instead of #defineing these variables in CoreV7, they were left
as variables so that the code will not have to be recompiled and reloaded every time a change
is desired.

TABLE 1. Memory structures used in CoreV?7

‘ Structure Name ‘ Control Access ‘ Function of Member Variables
Host During Init Only Identify the BPM to the control system
Local During Init and Contain all variables specific to the

Calibrations individual BPM, such as calibrations constants
Control During Manual Control functions whose exact operation
Function Operation must be controlled by user
RunTime During Init Only Control functionality of data
collection functions
Pedestal During Init Only Control functionality of
pedestal calibration functions
Delay During Init Only Control functionality of delay
calibration functions
Beta During Init Only Control functionality of betatron
phase measurement functions

The other 2 memory structures were created for variables that will need to be readily
accessible to the control system. The Local structure contains the calibration tables, i.e the
table of global delay register values that will place the BPM on each bunch in the accelerator,
the table of pedestal values for each channel, the table of amplifications produced by each
gain register value, etc. Since all of these tables can be changed by self-calibration algorithms,
they need to be accessible to the control system. The other multiple access structure, Control,
contains variables that will control a set of manual functions, which allow the user to have a
wide range of control over the operation of these functions. Every time these functions are
accessed, only certain variables will change, thus only these variables are located in Control.

The use of memory structures in CoreV7 has helped to eliminate the bulky I/O functions
required for variables that are located separately. An advantage to structures is that once the
address of that structure is known, an algorithm can access any number of variables without
having to treat them distinctly. Before the variables were declared as structure members
in CoreV7, the I/O functions constituted approximately 17-18% of the available program
memory. After the structure definitions, this was reduced to 8-9%, leaving more room for
more desirable algorithms.

The other concern in the memory architecture was how to store the large amounts of
data that will need to be passed to the control system. This problem is solved through the
use of a section of memory, the pkt_segment, that is completely accessible by the control



system without any intervention by the DSP; however, a problem did arise due to the fact
that the control system uses the VAX encoding scheme for floating point numbers while the
DSP uses the IEEE standard encoding scheme. This problem was addressed through the use
of specific bit shifting algorithms and will be discussed more thoroughly in the Algorithms
section.

The DSP CSR Control Structure

While the use of multiple access structures such as Control, is appropriate when entering
several variables at a time. Navigation through the various function levels within CoreV7
required a slightly different scheme. This is the role of the DSP CSR Control structure. The
difference between this structure and the structures mentioned above is that the DSP CSR
has been assigned to a specific region of memory that is accessible from the control system
in the same fashion as the pkt_segment; thus no I/O functions are needed to transfer the
value from the control system to memory or vice versa.

The DSP CSR Control structure contains several different types of variables, which are
listed in Table 2, along with the number of members which share the similar functions,
and the functions of those members. The variables that control the navigation of the DSP
through the various functions and their levels are the MODE1 and MODE2 variables. The
value of a #defined function mask is entered into MODE]1 each time that function is entered.
MODE?2 is primarily used for handshaking with the control system and passing inputed values
to their locations in the internal memory. During output, the values being passed to the
control system are passed to the member, OUTPUT. The DSP CSR structure also contains
a variable, ERROR, where all of the error flags are raised.

TABLE 2. DSP CSR Control Structure Members and their functions.

‘ Member Name ‘ Number ‘ Member Functions ‘

TIMER 5 Record values from the DSP C commands, timer_on
and timer_off, which return the number of
clock cycles between function calls
DEBUG ) Indicate the current position of the DSP in
the running algorithm and store the version
number of the core code
MODE 2 Instruct the DSP to enter a certain algorithm
(MODE1) or handle any handshaking
with the control system (MODE2)
ouTPUT 1 Pass values of internal variables to the control system
ERROR 1 Contains any error flags that are raised
during function execution

Along with variables that are directly related to the functionality of the core code, the
DSP CSR contains members that were used primarily for analysis of the function of the
DSP. The most used of these variables, DEBUG1 through DEBUGS, indicate the current
function and level in which the DSP resides and indicate the current version of the core code
which is loaded. Along with these are several variables that were set aside to hold different



timing values, TIMER1 through TIMER5. These variables take advantage of the DSP
internal timer by storing the number of clock cycles between two points in an algorithm.
This not only allows the user to determine the functioning of the algorithm, but may prove
to be a useful internal check of data integrity.

Algorithms

While the development of the architecture described here was certainly done with several
appeals to simplicity and size, the ultimate guiding factor was the demands that the algo-
rithms providing the function of the BPM placed on the architecture. These algorithms,
described below, were the central role of this project. Their purpose is to provide all of the
functionality promised by the new BPM system.

The types of algorithms written can be divided into three categories: algorithms to
provide self-calibration, algorithms to provide data collection, and the I/O algorithm.

Self-Calibrations

Despite the relatively straight forward physics involved in measuring the position of a
beam of moving charged particles, the actual collection of data has many hurdles that must
be overcome. As mentioned above, a few of these hurdles come from features of the digital
hardware. See Figure 1. The self-calibration algorithms were designed to account for these
behaviors.

One such behavior is the offset of the Analog to Digital Converter output from zero when
there is no induced signal on the beam buttons. The ADCs are the hardware component
that digitizes the signals from the beam buttons. Each channel has its own ADC which has
its own characteristic count when there is no signal from the beam button. These counts are
known as pedestal values and are unique for each channel and each board. If these pedestals
were not accounted for, then the BPM would measure an incorrect value for the position
and current of the beam. In order to measure these values, the Pedestal algorithm instructs
the DSP to set the global delays to 14 ns before a reference bunch, selected specifically for
pedestal calibration. This places the BPM in a region with no signal. The algorithm then
instructs the DSP to take NV samples for each channel at each gain setting. The average
value and the RMS for each channel at each gain setting are recorded in tables in the Local
structure. The average value can then be subtracted to correct the signals during data
collection.

Another inherent hardware feature that must be accounted for is the possibility that
the amplification of the signal may not exactly follow the expression G = 272, where r is
the register value and G is the amplification factor. Because of possible discrepancies in
the actual amplification produced, CoreV7 does not rely on this equation to calculate the
actual signal seen by the buttons. Instead, a table of actual amplifications produced at each
gain setting for each channel is contained in Local. Currently, the only function in which
this table may be modified, is the data processing algorithm, CalibrateGain. Whenever
the counts from the ADCs fall outside a defined range, then a gain adjustment function
is called. The purpose of this function is to set the gain register so that the ADC counts
stay within the defined range without producing a discontinuity in the position and current
measurement. To prevent a discontinuity the signal produced under the old gain setting must
match the signal produced by the new gain setting. To ensure this the function changes the



amplification factor of the given channel for the new gain register by taking /N samples at the
old gain setting and N samples at the new gain setting. The new gain setting amplification
factor is calculated by requiring that the average signal with the old gain setting and the
average signal with the new gain signal be equal. In order to keep this algorithm from slowly
moving away from the actual amplification factors, there is one gain setting for which the
algorithm will never change the gain table. The amplification factor for this gain setting will
have to be calibrated by hand.

The third major calibration need, is the need to account for any difference in the inherent
delays in each channel. These inherent delays place each channel at slightly different places
on the signal waveform; thus, the channels will not be reading out the peak value of the
induced signal. Again see Figure 1. To correct for this the new BPM system has 20
ps delays for each of the channels. The algorithm DelayCalibration sets these delays by
scanning the peak of the signal over several turns and then fitting a quadratic to the peak.
The proper delay is calculated by the parameters produced by the curve fit, which is done by
minimizing Chi squared. The resulting matrix is solved by LU decomposition because this
allows the resulting parameters to be improved through iteration. [3] Local delays produced
by DelayCalibration are not stored for each bunch because it is believed that they will not
be stable over long times.

Data Collection

With the hardware on the new BPMs, the possibility of collecting and processing the
signal for each turn during that turn seemed possible. The majority of the data collection
algorithms this summer were written with this style of data collection in mind. The algorithm
would read the ADC counts, check them for integrity, adjust the sign of the stored 32
bit integer to match the 12 bit ADC values, remove the pedestal value, scale the values
by the appropriate gain factor, and then calculate and store the horizontal and vertical
displacements along with the current of the bunch. These calculations were written with
the hope that they could be completed in the time span of one turn, 2.56 us, so that data
could be collected from a contiguous series of turns. However, timing of these algorithms
has revealed that this style of data collection appears to not be feasible due to the amount
of time it takes to perform these calculations.

The new style of data collection that was revealed in CoreV7 is based on quick collection
and storage of slightly processed ADC counts. This data is then processed in a separate
algorithm and the results are recorded in a circular buffer to which the control system can
request access. Timing studies have indicated that there is enough time to remove the
pedestals and scale the signals with the amplification factors, if care is taken to ensure that
the algorithms are effiecent. In the current algorithm, CollectADC, the ADC values are
loaded immediately out of the ADC registers and into variables on the stack to ensure that
all of the ADC values come from the same turn. These values are then masked to ensure
integrity by removing the possibility of influence by the upper 16 bits. The resulting 32
bit numbers are then adjusted to account for the sign of the original 12 bit ADC integers.
These values are converted to floats and the pedestals are removed from each channel. These
signals are then scaled with the amplification factor and made available to other algorithms
for further processing by writing them to a large memory buffer.



In High Energy Physics conditions, the normal monitoring quantities desired will most
likely be an average horizontal and vertical position, an average current, and the correspond-
ing RMS values for each of these for NV turns. The RunTime function provides this, by calling
a function to record N turns of raw data and then calling a processing function to return
the desired HEP monitoring quantities. These values are then recorded to a circular buffer,
which contains 254 words of data and two flagging words. One of these words indicates the
position in the buffer of the most recent data, allowing the control system to unwrap the
data into the correct order. The other word contains the position in memory of the set of
data that was collected after the most recent delay calibration. In this function data collec-
tion will be a continuous process of alternating data collection and processing, with every N
cycles interrupted to recalibrate the local delays. When data is desired the control system
will instruct the DSP that it is going to read the circular buffer. The control system then
waits until the DSP has finished collecting and processing any data that it was collecting.
The DSP then halts data collection until the control system lowers the DSP_WAIT flag,
indicating that it has finished reading the circular buffer.

Unlike monitoring during HEP conditions, monitoring during the injection process re-
quires position and current information for each turn. The InjectionMonitor function ac-
counts for this by processing the raw data that it collects in a different fashion from the
RunTime function. While data is collected by calling the same function, the data is now
processed by calculating the position and current information for each set of 4 signals and
writing this information into the same circular buffer that was used in HEP monitoring,
thus this buffer now holds information on a factor of N less turns. The InjectionMonitor will
also check the data for any transients that are worth noting, and will stop data collection to
preserve the data of these transients.

Another one of the important functions of the BPM system is to measure the phase
advance of the betatron oscillation produced by a horizontal and vertical shaker around the
ring. This phase advance can be a good measure of the magnetic lattice parameters of the
ring. The new BPM system can accumulate the proper data to calculate the phase advance.
The Betatron function receives the phase of the vertical wiggler frequency and the horizontal
frequency from the turn marker. It then finds the position of the beam and uses the phase
to accumulate the amplitude of the Fourier components at these phases for N points. To
ensure that no precision is lost these values are stored in several accumulators, which are
then summed after the algorithm has finished taking data. These values are stored in the
memory structure Beta.

Along with the automated data collection functions, there are a few manual functions.
The first of these is a manual scanning function. This function uses scanning parameters
from the Control structure. It simply increments the delays, takes N samples of ADC counts
without subtracting the pedestals or scaling with the amplification factor. These values are
stored in the pki_segment for access by the control system. The second manual function is
the RawData function, which simply takes N; points with N, samples each and stores the
values in the pkt_segment.



I/O Functions

Values are placed into the internal memory of the DSP and handed to the control system
from the internal memory by the algorithm IOFunction. This function consists of a loop for
each of the memory structures. When values need to be input into the internal memory,
I0Function is called with an input flag. When output is desired, IOFunction is called with an
output flag. In both cases the specific structure is then indicated by placing the mask of that
structure into MODE1. Handshaking with the control system is contained to the variable
MODE2. This variable is set to a value defined as DSP_WAIT. As long as MODE2 contains
DSP_WAIT, the algorithm will remain paused. During input, the value of the first member
of the structure is placed into MODE2, clearing the DSP_WAIT flag. The algorithm then
assigns this value to the first structure member and then reassigns MODE2 to DSP_WAIT.
This process continues until all of the structure members have been assigned a value. The
DSP will remain in the input mode of IOFunction until MODE2 is assigned the value of
INPUT_EXIT.

The handshaking process by which values are handed from the DSP to the control system
is very similar to the input process; however, during output mode, the first member of the
given structure is handed to OUTPUT once a value other then DSP_WAIT has been assigned
to MODE2. The algorithm then reassigns DSP_WAIT to MODE2 and waits until this value
is changed to assign the value of the next structure member to OUTPUT. Once all of the
members of the given structure have been transferred, the DSP will remain in the output
mode of I0Function until MODE2 is assigned the value of OUTPUT_EXIT.

The input and output modes of IOFunction transfer integers and characters to and from
the control system without a problem; however, the transfer of floating-point numbers is
complicated by the fact that the control system stores its floating-point numbers in the VAX
format while the DSP stores its in the IEEE standard format. Thus these numbers require
algorithms to shift convert one format to the other.

The VAX format and the IEEE formats only differ in three ways. The first difference is
that the leftmost 16 bits in the IEEE standard contains the sign bit, exponent bits, and the
first 9 bits of the mantissa. In the VAX format this information is contained in the rightmost
16 bits. The second difference is that in the IEEE format the most significant bit is the 1
before the decimal point; thus, the mantissa is normalized to a value between 1 and 2. In
the VAX format the most significant bit is the first 1 after the decimal point, which means
that the mantissa is normalized to a value between 0.5 and 1. Finally, the third difference
is that the IEEE standard biases its exponent by 127 while the VAX exponents are biased
by 128. The end result is that the VAX exponent is 2 higher than the IEEE exponent and
the 1st 16 bits and the last 16 bits are flipped. In order to compensate for this, DSPFloat
takes the bit pattern of the Real number placed in MODE2 and subtracts 256, which lowers
the bits that will be the exponent by 2. It then flips the first and last 16 bits. VMSFloat,
on the other hand, multiplies the float it will be passing to the control system by 4, raising
the exponent 2, and then swaps the lower and upper 16 bits. Since the bit pattern for 0.0 is
all Os in both formats, DSPFloat must check to see if the value is 0 before it subtracts 256.
Also, since the VAX format does not recognize —0.0, then VMSFloat must convert all values
of —0.0 to 0.0 before passing them to the control system.



Interface

While the DSP CSR Control structure and the layout of the algorithms in Core V7 make
movement into and out of functions fairly easy, there are still some task that need to be done
quickly and done accurately. These are the roles of the FORTRAN interfaces.

Initialization of DSP Internal Variables

Before the DSP can operate under CoreV7, the values of all of the variables in all 7
memory structures need to be initialized. Technically, it would be possible to put all of the
values into the memory of the DSP by hand using the vzputn command; however, this would
be incredibly time consuming and tedious especially for all of the BPMs around the ring.
The interface program, dsp_init, is the first version of a final program that will take care of
this. Dsp_init reads the initialization values out of the file dsp_init.inp and then calls all of
the necessary interface functions, vzputn and vzgetn, to place these values into the memory
of the DSP. The values put into the first 2 spaces of each line indicate to the program
whether the following value or values comprise an integer or integer array, a real number or
real number array, or a character string. For example, if the line was: 4, T71B4 =72 5 3
24, then dsp_init would understand that it is to read 4 integers off of this line with the first
value to be loaded being 72, then 5, then 3, then 24. In this example the global delay table
for Train 1 Bunch 4 of one of the two species would be loaded. The program is capable of
recognizing several different text delimiters; however, the space seems to be the delimiter
that allows the .inp file to be the most readable by the user. Also the hyphen is reserved to
represent negative real numbers.

The major downfall to dsp_init is that the order in which the program is set up must
match the order in which the variables appear in each structure. Also, the .inp must reflect
this same order as well. This is a result of placing all of the DSPs internal variables into
structures. Inorder to help alleviate the problems that could occur if a version of dsp_init
was being used to initialize a slightly different version of CoreV7, CoreV7 assigns a version
number to the DSP CSR member, DEBUG4. When dsp_init begins execution, it checks
this version number with its own internal version number and the version number listed in
dsp_init.inp. As long as these version numbers are changed each time a modification is made
to one of the programs, this will ensure that the proper initialization code will be used with
the current Core version.

User Interface

The primary role of the user interface will be to allow the user to enter the function
that is desired and the specific BPMs around the ring that the user wishes to perform this
function. This interface will also be responsible for watching the ERROR value for each of
the BPMs and indicating to the user any time an error flag has been raised. It will also be
responsible for uploading processed data from the the proper BPMs, storing that data in
the proper database, and handshaking with the appropriate BPMs once the data is received.

A secondary role of this user interface will be to control the manual algorithms. This
will allow the user to use these functions to collect data at one set of timing delays and gain
values and to also scan through the timing delays. These manual interfaces will be crucial



in developing the first version of the global delay table for all of the BPMs. They will also
be crucial for establishing that the automated algorithms are working correctly.

Future Work

While the preliminary work done here has established a system that is almost completely
operational, there are still several things that need to be done. The first of these is the
completion of the Core code for the DSP. This primarily involves the completion of a
few more algorithms, such as a precision measurement system which calculates the peak
value using the curve fitting algorithms. This will also involve the optimization of memory
allocation for program and data memory regions in future versions of the code.

Also, a good portion of the work on the interfaces still remains. The largest of these
tasks is to write the actual user interface for the new BPM system. Some of the algorithms
written here may be of some use in the final user interface, especially dsp_init; though, these
algorithms will most likely be rewritten from FORTRAN to C before they are used in the
final user interface.

Finally, although a good portion of the algorithms have been somewhat finalized, the
system still needs to be tested with beam in the storage ring. Solving the problems that
arise during these tests will most likely be the last few steps towards the full operation of
the new BPM system.

Acknowledgments

I would like to acknowledge the following individuals from Cornell University: Mark
Palmer and Charlie Strohman for their guidance on this project, John Dobbins and Don
Hartill for their work in connection to this project, and Rich Galik and Gerry Dugan for
their leadership of this REU program.

Also, it should be noted that this work was supported by the National Science Foundation
REU grant PHY-0097595 and research grant PHY-9809799.

References

1. For more information on the physics of beam position monitoring see: Beam Instru-
mentation, Littauer, Raphael. AIP Conference Proceedings No. 105. “Physics of High
Energy Accelerators”, Ed. Melvin Month.

2. For more information on the hardware and setup of the new BPM system see: “An
Upgrade for the Beam Position Monitoring System at the Cornell Electron Storage
Ring”, M.A. Palmer, J.A. Dobbins, D.L. Hartill, C.R. Strohman, to be published in
the Proceedings of the 2001 Particle Accelerator Conference, Chicago, Illinois.

3. W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes in C. Second
Edition. Cambridge University Press, 1999.

10



