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Luminosity is a measure of the rate of collisions over a given area in a beam/beam
interaction. Once calculated, this value can be used to make certain inferences
about the machine being used. Since the higher the luminosity is, the more particles
are involved in any particular collision; the luminosity can also be a measure of how
efficiently the storage ring settings are in inducing the beams to collide. Additionally
if we calculate the luminosity using data regarding beam characteristics, then further
information about how storage ring parameters and individual storage ring elements
affect the beam can be derived. It is the goal of this project to create a program
using Fortran90 that performs such a calculation.

I. INTRODUCTION

Presently, inside the CESR storage ring, measurements of luminosity are not taken di-
rectly from the beams, but are calculated using information collected from the detectors
surrounding the interaction region. These detectors can identify, count, and track particles
produced by the collision of the positron and electron beams. Using this data, the number
of particles that would need to interact between the two beams in order to produce the
observed effect can be determined. This method of calculation may be accurate to less than
a percent and has proven to be reliable, but using this method it is difficult to trace changes
in the luminosity values back to their causes in the storage ring.

It is understood how storage ring settings affect a beams characteristics: size, shape,
speed, distribution, position and crossing angle. These characteristics, along with other
factors, are responsible for the luminosity values produced. However, because information
is not collected about these characteristics in the current calculation method, the link be-
tween luminosity and beam characteristics has not been fully explored. By analyzing these
characteristics as the beam approaches and passes through the IR, this link may be defined.
Ultimately, storage ring parameters may be directly associated with luminosity values they
produce.

In this experiment we hope to create a program Test Lum Calc, using Fortran90, that
will calculate luminosity directly from beam characteristics / behavior that are known to
occur in the IR. This program will calculate luminosity using a storage ring simulation for
a given lattice ( storage ring settings.) The effects of coupling and the hour glass effect will
be taken into account by the program. When functioning, this program can be used to fill
the information gap between beam characteristics and resultant luminosity.

II. BEAM CHARACTERISTICS AND LUMINOSITY

The characteristics of the electron and positron beams are determined by storage ring
elements. The beams enter the storage ring travelling in opposite directions. Bending
magnets force the beams to travel in a circular motion around the ring while other magnets



move the beams away from each other at all points except inside the detector, ensuring this
is the only collision point. The angle at which the beams enter the detector and eventually
collide is controlled in this way. According to the simplified luminosity formula of equation
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the smaller the area (A) over which the beams collide, the larger the luminosity can be. In
a head on collision the beams interact over the entire length of a beam, but in a collision
with a crossing angle the beams pass through one another over a smaller region. A small
horizontal crossing angle is used presently in CESR.

To use equation 1 we not only need to know the area aver which the beams collide, but
we also need to know the number of particles in each beam (N; and Ny) and the collision
frequency of the beams. For our calculations we assume that the number of particles in each
beam is 10'°, grouped in 45 bunches Radio frequency cavities are used to the accelerate the
beams as they move through the ring and help to determine the rotational frequency of the
beam. The collision frequency (f) can be determined by multiplying the rotational frequency
of the beam by the number of bunches in the beam.

There are other beam characteristics affecting luminosity that are not directly referred
to by equation 1. The size of the beam is one such characteristic and is controlled by the
focusing elements (quadrapole magnets) working in the horizontal and vertical dimensions
and by the RF cavity that, in addition to accelerating the beam, compacts the beam longi-
tudinally. Despite being stretched and compressed in three dimensions the beam maintains
a gaussian distribution in each dimension. This uniformity allows us to analyze the motion
and behavior of the central particle in the beam (taken to be the origin of the horizontal
(X), vertical (Y), and longitudinal (Z) axes) and determine the behavior of the other beam
particles in relation to it. The square root of the Beta function defines two other beam
characteristics, the size and position of the beam envelope as it travels through the ring.

L=

III. BEAM EFFECTS AND LUMINOSITY

Coupling between the X and Y dimensions and the hour glass beam effects can have a
significant impact on the accuracy of calculated luminosity values. Coupling (where changes
in the X dimension of the beam are not independent of the Y dimension) can be accounted
for mathematically in the distribution function by using eigen coordinates (refer to Section
IV.) The hour glass effect causes the beam to expand in the Y dimension just before and
just after the interaction region. To take this effect into account we must analyze the Y
dimension over a large range, much larger than the range of the X and Y dimensions, so
that the distribution function can accurately describe the beam.

IV. CALCULATION AND PROGRAM DEVELOPMENT

In order to calculate luminosity we must first determine the probability of particles in
each beam colliding. Using this probability we can determine the number of particles from
both beams that will collide with one another. The major challenge in creating the program



Test Lum Calc was in building the distribution function, equation 2.
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The distribution function describes the distribution of particles within the beam in six phase
space coordinates: x - horizontal axes, X" - angle from horizontal, y - vertical, y’ angle from
vertical, z - longitudinal, ¢- fractional energy deviation. to calculate the function we use P,
the phase space coordinate vector of a particle; 3, a six dimensional emittance matrix made
up of emittance sub-matrixes x,y,and L; and the normalizing factor K. When coupling is
taken into account, the formula becomes
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where V is the transport matrix and ¥ is now made up of eigen sub-matrixes u, v, L.

In order to make the calculation of the distribution of the entire beam easier to manage, we
divide the beam into smaller six space volumes creating a mesh. The distribution calculated
in each of these mesh points is then added together for the total distribution. The smaller
the volumes we analyze, the finer the mesh will be, and the more calculations will take place
providing a more accurate value.

In generate mesh, a subroutine of the program Test Lum Calc the values used to fill
in matrix V are provided directly from the simulation. The values for the ¥ matrix must
be calculated and placed in position using the values v, a, and( provided by the simulation.
The value of VT~ « Y1 * V1 is stored for storage ring positions (s) at different energies.
The values of s stored represent the storage ring positions just before the IR, in the IR and
just after the IR. S has its zeroth position at the interaction point.

The calculation for the distribution function is continued in the sub-routine f unnormal
called by the sub-routine Lum Calc. Inside Lum Calc we nested seven loops representing
of all the possible mesh positions at each point in S. (From outer most loop to inner most
loop: s,2,x,y, §, x’, ¥’) Since the phase space coordinate vector p' must be calculated at each
position, we call f unnormal inside the innermost loop. Inside f unnormal we calculate
p and complete the exponential of the distribution function. P = the mesh position - any
displacement we may choose to include - the orbit position at the same position in S and at the
same energy + any displacement contribution from the angles. All the necessary values for
the exponential have been provided at this point so we perform exp[5tp” (V) 'SV '] and
send the value back to Lum Calc. That value is summed with the value obtained for each
mesh position and the normalizing value K is computed. K = 1/sum foreachpositionins

With the distribution function complete, it can then be plugged into the larger luminosity
formula L.
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In this equation N; and Ny are the number of particles in the two beams, f, is the collision
frequency of the two beams, and f; and f5 are the distribution functions of the two beams.
The o terms at the end of the equation ensure that the same position in beam 1 and beam
2 are being analyzed as the beams move through one another; they define the area being
analyzed. It is important to note that gives the probability of collision for particles in beam
1, as fo x [ d%V; does for beam 2. Multiplied together we get the probability of the particles



of each beam colliding with one another in a given area. [dsjand [ dsy tell us to sum the
probability of collision for both beams over the trajectory of both beams.

We must carry out the luminosity function inside Lum Calc. We start by multiplying
the sum of the distribution function for beam 1 by the sum of the distribution function for
beam 2 then add this product to itself for each y loop. This gives us the probability of
particles colliding in beam 1 multiplied by the probability of particles colliding in beam 2.
By performing the calculations of the distribution function and the probability of collision
at the appropriate places within the loop structure we ensure that we are comparing the
beams at the same position as the beams move through each other (fulfilling the role of
the o terms in the Luminosity formula.) By calculating the probability of collision for both
beams inside the S loop we ensure that the values are summed over the trajectory of both
beams. We now leave the outermost loop and multiply our probability value by the number
of particles in beams 1 and 2 (assumed to be 10'° for both beams) and by the collision
frequency (number of bunches in each beam multiplied by the rotational frequency). The
resultant value is the luminosity.

V. TESTING

For preliminary testing we compared the luminosity calculated by Test Lum Calc to
luminosity calculated using the storage ring for a given set of parameters. The values
were close enough to suggest that the program was functioning properly and calculating
reasonable values. We did not require total agreement between the two measurements since
the efficiency of the program is not yet known. We also built graphing capabilities into the
program so the distribution of the beam in the X, Y , and Z dimensions could be observed.
It was apparent from the graphs that the distributions were in the Y dimension were not
overlapping completely for the two beams at the IR. Because the y dimension of the beam
becomes so small just as it enters the IR without changing its distribution, any misalignment
of the two beams in the y dimension results in large errors in the luminosity calculated. To
correct this misalignment, we made adjustments to the y term of the displacement vector
until the desired overlap was achieved and luminosity was maximized. It was found that
the displacement required to achieve maximum luminosity was not the same as the mesh
became finer. This is not surprising since as the mesh becomes finer, more points are being
analyzed and luminosity can be calculated more accurately, table I.

The behavior of the luminosity was observed by moving the electron beam center back
and forth in the z dimension across the interaction region and seeing how the luminosity
changed. The bunch length is set to .01m, with 45 bunches being used in each beam and
a circulation frequency of .39012MHz. The expected result was that there be a parabolic
range of values having a maximum when the z displacement equal to zero. As we moved
the electron’s z displacement from -6mm to 7mm a parabolic range of values was observed,
but the maximum was at bmm instead of Omm, table II. Given the possibility that the
program was accessing areas outside the mesh and calculating wrong values, we used the
same displacement but varied both beams such that at -2mm positron displacement and 2mm
electron displacement the overall displacement is the same as Omm positron displacement
and 4mm electron displacement as tested before. When both beams were displaced similar
values were achieved, maximum at -2.5 positron displacement and 2.5 electron displacement,
table III. It is believed that the luminosity calculation is correct, but that the beams may
not be colliding at the position s = 0 as believed.



The finer the mesh becomes the more points are analyzed, increasing both the accuracy of
the calculation and the time it takes to perform it. Because the time it takes to run is a major
handicap of the program, part of the testing involves modifying the mesh parameters to see
how the luminosity calculation improves or declines with the aim of finding a minimal mesh
size that does not sacrifice more than 1 per cent precision in luminosity. The coarseness of
the mesh in each dimension is defined by two numbers, num sigma (the number of sigma
we will use in either direction from zero to define the beam) and num per sigma (the
number of points that will be analyzed inside each sigma) these numbers are multiplied and
then doubled to determine the number of mesh points to be analyzed in both directions of
a particular dimension. Thus far the changes in these two mesh parameters have produced
significant differences in the luminosity calculated. There is an increase of 28 per cent in
the luminosity values when comparing the values num per sigma= 1 to those of num per
sigma= 2; and of 46 per cent when comparing num per sigma = 2 to num per sigma = 3,
where num sigma x = 3, num sigma y = 18 , num sigma z = 3 for all calculations. There is
also an increase of 40 per cent in the luminosity values when comparing the value at num per
sigma= 2 where num sigma x = 3, num sigma y = 18, num sigma z = 3 to that of num per
sigma = 2 where num sigma x = 4, num sigma y = 24, num sigma z = 4; table IV. These
comparisons suggest that the minimal mesh size needed may be quite large. Considering at
num per sigma = 3 the program takes several hours to run, there will need to be changes
made to the program to make it run faster.

The last test we were able to perform compared our luminosity value to the simplified
calculation of equation 1. The beam parameter were specified as: Beta x x = 0.5886, Beta *
y = 0.0141, and Sigma z = 5mm .) The expected value was 1.07x10%" . Using a very
course mesh the program calculated a value of 0.9158940 x 103! /cm? /sec, 85 per cent of the
expected value. This value is very close considering the mesh being used. There is a chance
that this value may be over estimated, however, as the emittance values for the program’s
calculation were not constrained to those of the simplified calculation.



VI. TABLES

TABLE I: Maximum Luminosity (Lum (x1030/cm?/sec)

(Positron, Electron) dz (mm) NumPerSigma = 1 NumPerSigma = 2
(:009, -.009) 1.505711 —
(.010, -.010) 1.583742 5.303195
(.011, -.011) 1.615743 5.476451
(.012, -.012) 1.600056 5.485400
(.013, -.013) — 5.335505

TABLE II: Electron dz Variation

Electron dz (mm) Luminosity ( ¥1030/cm?/sec )
7 1.638173
6 1.640212
5) 1.640640
4 1.639372
3 1.636323
2 1.631407
1 1.624551
0 1.615743
-1 1.605011
-2 1.592440
-3 1.578130
-4 1.562237
-5 1.544920
-6 1.526322

TABLE III: Electron/Positron dz Variation

Electron dz (mm) Positron dz (mm) Luminosity ( ¥1030/cm?/sec )
-3 3 1.644372
-2.5 2.5 1.643938
-2 2 1.641727
-1 1 1.632075

1 -1 1.593064
2 -2 1.564350
3 -3 1.529865




TABLE IV: Optimal Mesh Size

Num Per Sigma Num Sigma X (mm) Luminosity ( ¥1030/cm?/sec )
1 2 0.129257

2 2 0.622264

3 2 1.434044

1 3 0.613783

2 3 2.220041

3 3 4.791465

1 4 1.643938

2 4 5.606051

3 4 —

VII. CONCLUSIONS

We were able to build a program that calculates luminosity based on the behavior and
motion of the positron and electron beams. The program produces reasonable luminosity
values for given storage ring parameters, beam parameters, and beam displacements when
run using a coarse mesh. A key test to perform in the future will involve finding the optimal
mesh size for Test Lum Calc to run with. Test values for luminosity should be generated
with this mesh; ensuring the program is performing the calculations correctly and to allow
for a more direct comparison with luminosity as calculated using the storage ring detectors.
Once the program has proven to run correctly, the objective will be to reduce the time it
takes the program to run enabling the program to run using data from live storage ring
events.
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