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Cosmic-ray muons trigger events that are devoid of experimental wealth. Using

information from the muon chamber, it was hypothesized that an algorithm could be

developed that would be able to reconstruct muon trajectories to determine whether

or not the event was triggered falsely. This was shown to be true if a few assumptions

were made about the muons and geometry of the muon chambers. The algorithm

developed shows that muon trajectories could be reconstructed, which makes imple-

mentation of a similar muon tracking program into Level 3 a feasible goal.

I. INTRODUCTION

CLEO was developed to study electron-positron collison events. Muons are among the
particles produced during this annihilating process and are studied in the muon chambers
surrounding the interaction point. Because the muons are caused by an electron-positron
collison, their energy is dependent on the center of mass energy of the electron/positron.

Muons can also be produced via high-energy (on the order of tens to hundreds of TeV)
cosmic-rays hitting atmospheric particles. This natural collison produces pions, which
quickly decay into muons. These cosmic-ray muons constantly bombard the earth at rel-
ativistic speeds at the rate of 1 cm−2min−1. Hence, in addition to muons created in the
lab, cosmic-ray muons, whose energy is based upon high-energy cosmic-rays, are another
significant source of muons that can be detected in the muon chambers of CLEO.

For the vast majority of cosmic-ray muons hitting CLEO, nothing is recorded or detected
since the event trigger is not fired. Yet, when a cosmic-ray muon cuts through the interaction
region, the trigger is activated and an event that isn’t wanted is captured. The event, which
is useless, is thus stored as viable data at a needless cost to the lab. In addition, it becomes
time consuming to wade through copious amounts of events that aren’t worth studying.

Originally, this situation was not much of a problem since most events during a given
period of time were caused by an electron-positron collison. The COM energy for studying
the resonances that CLEO had been interested in were around 10 GeV, which gave a beam
luminosity of 8× 1032cm−2sec−1. Currently, CLEO is being reconfigured to study lower res-
onances (3-4 GeV). This gives lower beam luminosities of approximately 3× 1030cm−2sec−1.
Hence, even though the number of cosmic-ray muon induced collisons remain essentially the
same for a given COM energy, the number of electron-positron induced events drops two
orders of magnitude. This translates into proportionally more cosmic-ray muon induced
events per run.

II. GEOMETRY OF THE MUON CHAMBER

The muon chambers form the circumferential boundary of the CLEO detector assembly.
Fig. 1 shows a number of major components of the detector assembly forming a core with
the outer octagonal structure surrounding it. The muon chambers are positioned in the
spaces between the three foot iron octagonal forms. The endcaps of the CLEO detector
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are covered by endcap chambers oriented vertically to complete the coverage. As a general
rule, the endcaps are very noisy in comparison to the muon chambers in the octagon (they
are actually divided up into eight 45 degree sections called octants). In order for a muon
to penetrate through the endcaps and still hit the trigger, it would have to travel nearly
parallel to the ground. Since this is a highly unlikely scenario and since the endcaps are
very noisy, they were neglected in the algorithm.

FIG. 1: This is a rendering of CLEO III. The octagonal circumference is composed of three foot

iron sections and the muon chambers[1].

The iron that separates each layer in the barrel only allows muons to hit the muon
detectors. Since interaction length of iron is 16.8 cm, no strongly interacting particles will
penetrate the three feet of iron to hit the last muon chamber. Muons, however, do not
interact strongly and can penetrate the full depth of the iron if they have enough energy.
The layers of the barrel are sometimes referred to in terms of hadronic interaction lengths
which are as follows: return layer is 3, inner layer is 5, and the outer layer is 7. Muons at
low energies, like the energies that CLEO will be operating at to study charm quarks, have
trouble making it to the outer layers of the barrel. Conversely, muons from cosmic-rays are
at higher energies and pierce through the entire CLEO detector.

The muon chambers are divided up into eight octants and two endcaps. Each octant is
divided up into three layers separated by one foot of iron. Each endcap only has one layer,
which is further subdivided into three subunits. Similarly, each layer in the octants are also
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broken down into three subunits each.
A subunit is composed of six multiplets, which are formed via the groupings of counters

and strips. Both the counters and strips lie in the plane that is perpendicular to the radial
line running from the center of the detector through the middle of the octant. In this plane
(which forms the subunit), the strips are orthogonal to the counters. The radial positon,
the counters, and the strips form three basis vectors, which allows a hit to be described in
any three dimensional coordinate system (though, for the majority of our purposes, we will
use a Cartesian coordinate system).

FIG. 2: The image shows the basic components of a multiplet. The cathode copper strips form

the top of the plastic tubes. Inside the tubes, an anode wire running through the center. Eight of

these tubes comprise a counter[2].

The counters and strips are really “seen” by the program as multiplets. Multiplets are
the basic macroscopic unit for discriminating muons; they form the building blocks of the
octant, layer, and subunit structures. A multiplet is really a division of counters and strips
to form a unified way of looking at the muon hit in a coordinate frame. The composition of
a multiplet varies in terms of how many counters and strip it contains[2]. For example, the
first layer (a.k.a. “return”) is composed of two sets of ten counters each; in the outer-most
layer (a.k.a. “outer”), one multiplet has 14 counters, while the other has 15. A subunit’s
counters are always grouped into two multiplets.

The other way that multiplets are formed is via the compilation of strips. There are
always four multiplets constructed of a grouping of strips in a given subunit. These four
strip multiplets plus the two counter multiplets combine to achieve our six multiplets per
subunit. The number of strips in each of these multiplets, like with the counter multiplets,
can vary. In one subunit of the return layer, 9 strips compose one multiplet, while 15 strips
form the other three multiplets. The accompanying chart shows how the two counter and
four strip multiplets are constructed. Notice that the number of strips and counters needed
to form a multiplet is increased as the area of the layer is increased.

A hit is detected by a process that in many ways has its analogue in a photo multiplier
tube. A muon, which is a charged particle, goes through a gas mixture of 60% He and
40% propane, which creates a trail of positively charged ions and electrons. The anode
wires running through the center of a plastic tube (8 plastic tubes make up one counter)
are held at 2500 V (see Fig. 2). Three sides of the tube are coated with graphite and are
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TABLE I: A Breakdown of the Number of Counters and Strips in Each Multiplet by Layer[1]

Unit Location Size(m2) Counters in Counter Multiplets Strips in Strip Multiplets

Return 4.39x1.67 10 + 10 9 + 15 + 15 + 15

Inner 4.87x2.00 10 + 15 15 + 15 + 15 + 15

Outer 4.87x2.42 14 + 15 15 + 15 + 15 + 15

Endcaps 4.38x2.00 10 + 14 9 + 15 + 15 + 15

held at ground (with respect to the anode) to form the cathode. The free electrons created
by the muons are attracted to the anode wire. As they travel, they gain enough energy to
ionize other gas atoms, creating an avalanche of electrons. In effect, this process multiplies
the signal from the electrons. The electrons’ arrival at the anode induces a charge on the
cathode strips, which is also sensed and digitized.

Each counter (the same can be said about strips) is connected via 100 ohm resistors,
which we can utilize to find where the hit occurred in one direction (if we are only considering
using the counters). By reading out the signal from the two ends of the string of counters as
indicated in Fig. 3, we can tell which counter has been hit using charge division. The same
thing can be applied to the copper strips, which constitute the fourth side of the plastic
tubes (the other three, as mentioned above, being coated with graphite). The resolution of

FIG. 3: Charge is placed on the wire from the ionized gas molecules. Digi1 and Digi2 are able to

tell the position of the charge using charge division.

this method depends on the geometry of the counter. A counter is composed of eight plastic
tubes, which measure 8 mm in height, 9 mm in width, and are 5 m long[1]. They are the
objects that contain the ionizable gas mixture of He and propane. They are surrounded by 1
mm of plastic on every side, which means that all together, the eight tubes are 10 mm high,
83 mm wide and 5 m in length. Even though the eight anode wires comprise the counter,
it is the width that is measured by the counter. How is this so? As discussed before, each
counter in the multiplet is connected together via a 100 ohm resistor. The resistor provides
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the voltage drop between the read out at the beginning of the counter chain (let’s call this
output digi 1) and read out at the end (digi 2). It is only along the direction of the voltage
drops that we can use charge division, since along the length of the wire, the voltage is
constant. Moving from one group of eight anode wires (a counter) to another, though,
incurs a different voltage as read from digi 1 to digi 2. The direction along the anode wires
is measured via the strips that are in the copper that form the top side of the plastic tubes.

Thus, the resolution of the counter is really the width of the counter (.83 m) divided
by

√
12 (this is a common result of statistics). This translates into a rms counter space

resolution of .024 m and a rms strip width of .053 m. There is negligible error in the radial
direction, since that is known absolutely: the position in the radial direction of the hit is
simply which multiplet has been hit, which is set by the design.

III. ALGORITHM

The algorithm takes advantage of several key assumptions we can legitimately make given
the constraints of our problem. One of those simplifying assumptions is that the muons travel
in a linear fashion through the barrel. As opposed to the crystal calorimeter or the trigger,
there are no magnetic fields present in the octants. Hence, although charged, the muons
should be traveling in a linear trajectory. One problem to this is that once the muons enter
the core of the detector ensemble, their paths can be influenced by magnetic fields. This
means that if the muons have enough energy to proceed into another octant to exit the
chamber, they do not necessarily have to be traveling linearly (although, they almost always
still do).

Another assumption that is made is that since the muons have linear trajectories and
since they need to pass through the trigger to initiate an event, a plot of θ versus φ (both
spherical coordinates) should have a tight grouping of points. This idea will be explored
later on in this paper. It is most instructive, though, to begin with the first parts of the
algorithm to see how the operation of it maximizes the efficiency of geometry of the muon
chambers as well as the simplifying assumptions made based on the physical intuition of the
problem.

The algorithm begins by taking in all the hits that make up the event and sorting them
according to what octant they penetrate. The discrimination of what octant was hit is done
by a function that looks at the multiplet number associated with the hit. The pattern of
the multiplets is such that this analysis is easy, efficient, and practical. Every octant that
has more than four hits in it is recorded. The program then proceeds to run a huge loop
of looking through all the “interesting” octants to look for those that are red herrings and
those that actually have possible muon tracks in them. The initial multiplet analysis has
reduced the problem to one that is repeatable for every octant, which takes advantage of
the repetitive nature of the barrel.

The next cut is one that has yet to be perfected. It utilizes digi 1 and digi 2, which, as
mentioned above, correspond to the signals read out when charge is deposited on the anode
wire in a counter. In theory, digi 1 should be inversely related to digi 2, since a hit close to
end 1 should have a large output at digi 1 and a small output at digi 2 due to the voltage
drops provided by the resistors. As Fig. 4 illustrates, there are points all over the spectrum.
A reasonable assumption is that those with both a small digi 1 and a small digi 2 are noise
hits. That is, if we add digi 1 and digi 2, those with a much smaller than the average are
most likely junk hits.
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The program thus runs over the hits in a given octant, recording each sum so that the
average can be obtained. If the average is under 1301, the cutoff for the digi sum is the
average of the sums minus 100; if over 1300, the cutoff is average minus 250. The reason
for the switch at 1300 is the recognition that high averages usually are the result of very
strong signals, which pull up the average. The numbers to subtract from the average are
somewhat arbitrary, but the underline a very necessary point: a cut can be made on the
basis of the sum of the digi values from the counters. Whatever this cutting algorithm may
be, the concept of making digi cuts is extremely useful.

FIG. 4: Plot of Digi2 versus Digi1 shows that an inverse pattern is not observed. The lower values

in Digi1 and Digi2 are considered false hits.

The question of how far below the average to make the cutoff is still under dispute. Taking
all the points does not make sense, while taking only the top ten often gives poor results.
So far, the points constituting a line have always had high digi sums. Indeed, they are often
far higher than the cutoff established by the algorithm. One thought for the future is to
use the median of the digi sums instead of the average, since the average can be sensitive to
very high or very low sums, whereas the median is much less easily swayed. More testing
needs to be done to set this cutoff more absolutely.

After the digi sum cuts, the program sees if it still has over four hits in the octant. In
addition, it checks to see if all three layers have been hit. The function that checks to see
if each layer has been hit uses the multiplet analysis scheme to apply the regular pattern of
the multiplet numbers to the layers. Later, we will see how this function is utilized at the
end of the program to give a necessary component to the weighing scheme the program uses
to rate line fits.

The third and last major cut that the program makes on the hits is the most important
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part of the algorithm. This is the solid angle cut, and it relies on good physical assumptions
about the problem. As mentioned above, the points should be moving in a relatively linear
way. Thus, if we take the θ and φ angles (from their spherical coordinates) and use the
interaction point as the origin, we should see a tight groups of points in a plot of θ versus φ.
We can take the interaction point as a reasonable spot for an origin because of its relative
size. Real events take place in a cylinder that is approximately 40 cm along the axis of the
beam with a radius in the x − y plane of 5 cm. Compare this to the radial distant of the
muon chambers (closest layer in the x−y plane is over 1 m away from the interaction point).
The trigger must be an area where the muon goes through, since in order for the event to
be recorded, the muon must fire the trigger.

One of the great advantages to this method is that in one of the classes being called up
by the program has a function call for θ and φ. Thus, we have at our ready disposal, the
constructs for the evaluation of our solid angle cuts. What the program does is to basically
start at the beginning of the octant (octants span 45 degrees in φ) and then proceeds to
look at ten degree swaths of the polar angle (polar angle describing a given octant goes from
roughly 30 to 150 degrees) while holding φ constant. Then φ is increased by ten degrees and
the process repeats. Thus, the program uses a ten degree by ten degree solid angle (in both
θ and φ) as our tool to look for groupings of points, as illustrated in Fig. 5.

FIG. 5: A solid angle is defined by θ and φ.

When hits are found, the solid angle actually “slides” with the average of those points.
That is, we originally defined our θ average and φ average to pre-determined values. When
points are actually found, it is their θ values and φ values that are used to compute the
θ and φ averages with which we define the middle of our solid angle. This is necessary
because a pre-determined value of θ average and φ average does not take into account the
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fact that hits related to a group of hits already found by the solid angle search might be
outside of this range. These hits, even though they belong with the other points, would thus
be mistakenly characterized because of the searching pattern. The pre-determined ranges
are just a way for the program to do an orderly search through the octant. When points
are actually found, we are looking for a certain θ/φ region around those points. Hence, our
average slides as more points are added on, while the actual bounds around these averages
of the solid angle remain constant.

Within a given range of θ and φ (I tend to use 10 degrees for both), a grouping of points
usually does not occur. On the chance that they do and if over three points are found, these
points become the program’s “guess” at where a muon’s trajectory went. These “base”
points are supplemented by a set of “possible” points: points that fall within a greater solid
angle of the initial range. These points are not used during the initial fitting of the base
points.

The reason for keeping a set of possible points is to account for the scenario that multiple
muons cut through one given octant during a given event. If one muon triggered the event,
while another one cut through the octant such that it missed the middle entirely, that second
muon would not have a very tight solid angle that the trajectory would fall into; rather, it
would cut across a θ/φ plot and would buck our initial assumption. Consequently, by taking
a bigger solid angle, we can keep a bunch of points to fit to the base set of points if the
situation arises that the line fit of the base points is poor.

In the case that the base points line fit is good, though, we simply store the parameters
of the line and move on to look for more lines in the octant. A poor line fit, on the other
hand, would take every combination of possible points and try to fit a line using the base
points (our initial line guess) and those possible points. A few of the combinations for four
possible points would be: just base points and no possible points (1 possibility of this = 4
C 0); base points and one possible point (4 ways this can happen = 4 C 1); base points and
two possible points (6 ways = 4 C 2); and so on. For any given n possible points, there are
2n combinations possible.

IV. LINE FITTING

The question of how to consider a line fit to a given set of x, y, z points is one that is not
simply a mathematical exercise in least-squares minimization. Although the program does
fit a line using a least-squares line fit, other physical parameters must also be satisfied for
a trajectory to be considered “good.” The way that the lines are weighted is that a certain
numerical value is assigned to each criteria. In some cases such as the number of degrees
of freedom, the more the better up until a certain point. Hence, the value of that weight
reflects the fact that we want 7 dof (9 actual hits) and that anything under 3 dof and over
11 dof is unacceptable.

One of the weights used is how many layers and subunits the fitted trajectory is hitting.
By using the multiplet numbers for each hit, we can easily find which layers and subunits
are being included in the trajectory. A trajectory that includes more than two subunits
must have at least some noise incorporated into it, which thus makes it a poor fit and it is
weighted as such. A line that only hits two out of three layers is acceptable, but one that
hits three is much more preferable.

By far, the most important weight is the chi-square density function statistic. Chi-square
is a measure of how far a given fit deviates from its expected value. For the purposes that
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we are using it for, the chi-square number will measure how close our line fit comes to fitting
a set of lines with a given minimum space resolution. The chi-square statistic with error in
the dependent variables is [3] :

X 2 =
N∑

i=1

(yi − a − bxi)
2

σ2

i

(1)

where σi is the deviation in y for every point i. This formula can describe the chi-square
statistic for lines in octant one and five, since all errors are either in the y or z direction
(which are the dependent variables). The problem comes in when we move to other octants,
since the error is now also in the independent variable, x. The reason for that is the Cartesian
coordinate system that we imposing on the muon chambers makes it such that octants 2
and 6 are described by y = f(−x), octants 4 and 8 are described by y = f(x), and octants
3 and 7 are parallel to the x-axis. Thus, for octants 3 and 7, the error that was just in y
direction for octants 1 and 5 is now in the x direction. For the other four octants, the error
is split between the x and y axes.

The reason that this division is important is that for error in the independent variable,
the chi-square formula becomes [3]:

X 2 =
N∑

i=1

(yi − a − bxi)
2

σ2

iy
+ b2σ2

ix

(2)

To include z, which is not influenced by the different positioning of the octants in our
coordinate system, we simply use Eqn. 1 and add that chi-square to whatever the chi-square
is for the y versus x line.

The three dimensional line is broken up into two fits: the y versus x fit and the z versus
x fit. This is done for a number of reasons. First, the function from the CERN library was
designed for the two-dimensional line fit. It makes sense to use code that is widely available,
known to all, and works reasonably well. Secondly, the breakdown into two different lines
poses no challenge for us to reconstruct a three dimensional line. As long as we use the
same independent variable for both lines, the three-dimensional case is trivially adapted.
And thirdly, it is often more useful to know the respected y and z derivatives with respect
to x than to have to breakdown a parametric description of the line.

The most useful application of the chi-square number is not in the immediate reading of
its value; rather, it is how well it is positioned along a chi-distribution. The chi-distribution
is created from the number of degrees of freedom (for our purposes, dof is equal to the
number of points minus two), and it provides a way for us to gauge whether or not our
chi-statistic is good. A more explicit way of saying this is that P (X 2|ν) is the probability
that the observed chi-square for our line should be less than X 2 given ν is represents the
dof. Following Press, we can define Q(X 2|ν) to be 1 − P (X 2|ν), which is the probability
that the observed chi-square will exceed X 2 by chance even for a correct line. Q(X 2|ν) is
mathematically defined to be [3]:

Q(X 2|ν) =
Γ(ν

2
, X

2

2
)

Γ(ν

2
)

(3)

where Γ is the full gamma function. The program utilizes the approach laid out in
Press by taking the necessary algorithms to calculate Q(X 2|ν). The line is defined as a
mathematically good fit if Q(X 2|ν) is above 0.1; the line may be accepted (if non-normal
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errors or the under-estimation of errors are present) if Q(X 2|ν) is above 0.001 and less than
0.1. Anything lower than .001 indicates the fit is poor. Because of these various cutoffs, the
program weights the goodness of line fit based on how high Q(X 2|ν) is with values above or
close to 0.1 being very heavily biased. Those lines with Q(X 2|ν) below or close to .001 are
very poorly weighted.

V. RESULTS

Although results are very difficult to obtain, since there is no “true” muon trajectory that
we are working from, analysis by hand reveals certain patterns that most likely correspond
to muon tracks. It is because of this that we can derive a muon’s track to compare with the
results of the program.

In each event the program encounted, the hits were divided into their respective octants
correctly all of the time. The most significant events (those with over four hits in one octant)
were always identified correctly by the program. Almost all of the time, the program could
discriminate a possible line. A possible line is defined as an octant that has hits in all three
layers (before the angle cuts but after the digi cuts) and has over four hits. Some of the
error can be attributable to the digi sum cuts, which can be easily influenced by outlying
sums. Another source of error may have been caused by the human analysis, since it is very
difficult to tell if all of the layers have been hit in a given octant.

TABLE II: Comparison of Program’s Results to Human Analysis over Thiry Events

Octants Found (%) One Line(%) All Lines(%) One Line Correct(%) All Lines Correct(%)

100 86.7 80.0 66.7 33.3

The digi sum cuts adversely affected the angle cuts, since without enough points falling
within a given θ/φ region, a line fit was not attempted. Consequently, this tendency to not
have enough points fulfilling the angle cut requirements led to missed tracks. Most events
could have one muon trajectory identified correctly. The problem was that other trajectories
were missed on a frequent basis. Some of this is due to the high X 2 values that resulted
from such low rms values. Even for what seem to be very good fitted lines (from r2 and
human eye), the low rms of the detector made it such that these trajectories were treated as
bad fits. Hence, a mismatch of human and computer generated results due to an awkwardly
weighted line (or a deceptively bad one).

The angle cuts, which were just implemented recently, need some modification. In almost
all cases where there were over six points within five degrees of each other (in both θ and
φ), a relatively high quality fit was achieved. Problems were seen when the dof got in the
2-4 range. One of the troubles with this function is that the sliding average method needs
more work so that a couple points don’t end up dominating the average. Also, there should
be some method of justifying a line fit to a few points in the tight solid angle if there are a
lot of points in the wider solid angle (the so-called possible points set). This may have the
effect of slowing the algorithm down and/or fitting a poorer line than can be found, yet it
has the benefit of catching more possible muon trajectories. Of course, fitting a line with a
lot of points from the larger solid angle cut (a.k.a. “possible points”) could also generate a
false track that has a good fit but isn’t real.



11

A more daunting problem is when a muon travels through the center of the detector while
another muon in the same octant travels at a funny angle to the origin. To discriminate this
event, the program checks a redundancy vector to avoid putting in points in the second line
that went into the first line. A better way of finding that second line while making sure that
points from the first line don’t go into the second fit needs to be developed. Currently, the
rough outline that I just elucidated accounts for most situations we would ever see. Still,
possible trajectories that have not been encountered could pop up, which is why a more
rigorous method needs to be devised.

The combinatorial line fitting has continued to perform as originally envisioned. This
was tested under a variety of situations and was found to work well. The problem was not
line fitting as much as the weighting mechanism, which is still be worked on. Given different
weighting parameters, different lines could come out as the “best” line, which indicates that
a rigorous testing of which criteria are most important is needed.

VI. CONCLUSION

The program developed clearly demonstrates several of the methods that are needed to
eliminate points to form a correct and true muon trajectory. These point reduction methods
are based in sound physical assumptions that allow a quick initial line fit to be guessed.

The problems that were incurred tend to be centered on where various cutoffs are set.
The line weighting and the digi sum cutoffs were the two that caused the most amount
of trouble. They still have not been correctly set. Although their values are necessary to
establish a correct algorithm, the point of the algorithm was to demonstrate a method for
determining a line describing a muon’s trajectory via information from the muon chambers.

One of the failings of the algorithm was that multiple lines could not be found with as high
a success ratio as just one line. This is attributed to function that is still in development.
The concept of using a solid angle search through the octant, though, still stands as the
best way to find one or more muon tracks in an octant. In that respect, the algorithm has
achieved its goal of finding a solution for the multiple track problem.

The key conclusion that can be drawn from use of the program over a number of different
events is that it is possible to reconstruct muon tracks using just the muon chambers.
Implementation into Level 3 for processing in real time, although clearly not obtained by
this program, is a real possibility using methods developed by this project. Furthermore,
the program that is written can reasonably distinguish most tracks in most events it is run
over. Further testing is needed to ascertain exactly what efficiency the program has and
where and why the program goes wrong at certain events. The efficiency of the program can
be rigorously tested by using the track finder from the central drift chamber to compare the
results from the program with muon tracks known to be true and accurate. A methodology
like this would quickly determine the efficiency of the program over a very large range of
muon trajectories.
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