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In an effort to better understand observed bunch-by-bunch variations at the Cor-

nell Electron Storage Ring (CESR), an interferometer for measuring vertical beam-

size on a bunch-by-bunch basis will be constructed. The first goal of this research

project has been the development of software which fits the interference pattern to

an equation that includes a vertical beam-size variable. This was accomplished by

writing a program that minimizes a modified chi squared fit of the intensity pattern.

The second goal has been to determine the viability of predicting vertical beam-

size on a bunch-by-bunch basis under a variety of conditions. Results indicate that

vertical beam-size can be ascertained to within 5-10% for beam-sizes ranging from

100-400 microns on a 16 turn integration. In addition, preliminary results predict

that vertical beam-size measurements on a two turn integration are also possible.

Furthermore, the magnification of 1.39x has been determined to provide the best

accuracy in beam-size measurements for a 150 micron beam over integrations from

2-120 turns.

I. INTRODUCTION

From the generation of elementary particles to the production of high energy radiation,
electron-positron accelerators have become an essential tool in scientific research. The ele-
mentary particles created from electron-positron collisions at relativistic speeds give physi-
cists a better understanding of the universe both in the past and today. Also, the synchrotron
radiation produced from electron-positron acceleration is used in medicine, crystallography,
and material science research. Understanding the dynamics of electron-positron accelerators
is crucial to the refinement of these invaluable tools into evermore precise, efficient machines.

In CESR, the electron and positron beams share the same beam pipe, positrons trav-
eling in one direction, electrons traveling in the opposite direction. These two beams are
electrostatically separated at all crossing points excluding the main interaction point. As
the oppositely charged bunches pass in close proximity to one another, parasitic interactions
can cause variations in the shape of each bunch. These differences in bunch dimensions
translate into variations in luminosity between bunches at the main interaction point. The
development of instrumentation which provides insight into these bunch variations could
lead to significant improvements in luminosity.

With this objective in mind, an interferometer for measuring vertical beam-size on a
bunch-by-bunch basis will be constructed at the Cornell Electron Storage Ring (CESR). As
a preliminary study into the viability constructing such a device, this research project has
focused on two specific goals. The first goal has been to develop an algorithm which fits
the intensity pattern generated by the interferometer to a function containing a beam-size
parameter. The second goal has been to ascertain the optimum conditions for which this
algorithm provides the most accurate beam-size measurements.

In CESR, positron and electron beams are accelerated to energies in the range 1.5-5.3
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GeV. During typical operating conditions, each beam consists of 9 trains of 4 or 5 bunches.
Typical bunch currents are 1-10 mA, corresponding to approximately 1010

− 1011 electrons
or positrons in each bunch. Within each train bunches are spaced at 14 ns intervals while
the spacing between trains is approximately 280 ns. Angular acceleration of the bunches in
the horizontal bending magnets in CESR results in the emission of synchrotron radiation
in the plane of the accelerator ring. This synchrotron radiation can be used to image the
transverse shape of the beam which is an ellipse with its minor axis oriented vertically.
Vertical beam-size is of particular interest and can be described by a Gaussian profile (see
Fig. 1).

FIG. 1: Vertical beam-size measurement of Gaussian source

When flashes of synchrotron light from the beam are projected onto a charge couple device
(CCD), the relatively slow response time of the CCD integrates the synchrotron radiation
from all the bunches over many revolutions of the machine. Presently, this is the way in
which beam-size is measured. With the advent of affordable photomultiplier tube (PMT)
linear arrays, a means for measuring vertical beam-size on a bunch-by-bunch basis is readily
available. Hamamatsu Photonics is producing a Multianode PMT Assembly which sells for
around $2000. This device has thirty-two channels, each with a response time of 0.6 ns,
spaced 1 mm apart. The combination of affordability and speed, packaged in a linear array
with the spatial orientation capable of resolving the light source pattern, is the breakthrough
needed to make beam-size comparisons between bunches.

To accomplish the task of making vertical beam-size measurements, an interferometer,
using double slit diffraction, will be setup in CESR. The broad spectrum of synchrotron
radiation from individual bunches will be filtered to produce a quasi-monochromatic source.
The filtered light will pass through two narrow, closely spaced slits, and the resulting diffrac-
tion pattern will project onto a 32 channel PMT (see Fig.2). The intensity at the PMT can
be described by the equation:

I(x) = I0
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where, w=slit width, d=slit spacing, f=focal length of the lens, λ=wavelength of quasi-
monochromatic light, and x= displacement along the PMT. V is the visibility of the fringes
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and can be derived from the Fourier transform of the normalized angular distribution func-
tion of the light source [1]. After conversion from angular distribution to linear displacement,
the visibility is described by the equation:

V = e
−2

(

π d σbeam

L λ

)

2

(2)

where, L is the distance from source to slits, and σbeam is the vertical beam sigma of the Gaus-
sian shaped light source (beam-size). The other variables are as previously described. (For
the prototype interferometer the purposed specifications are: L=5m, λ=500nm, w=250µm,
d=2mm, and f=0.3m)

As the diffraction pattern strikes the PMT, a current proportional to the intensity is
generated in each channel. This signal is amplified, converted to a voltage, and then digitized
by an analog-to-digital converter (ADC). The ADC outputs from all 32 channels will then
be fitted to the intensity function with a digital signal processor (DSP). Beam-size will then
be derived from the visibility function.
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FIG. 2: Double Slit Diffraction: L=distance from source to slits, w=slit width, d=slit spacing,

f=focal length of the lens

Determining the magnification of the diffraction pattern (i.e. the portion of the diffraction
pattern to be sampled) is of particular importance for the construction of the interferometer.
Projection of the intensity pattern onto the 32 channel PMT produces very few data points
with which to fit the intensity function (see Fig. 3). By increasing the magnification (imaging
a smaller portion of the pattern), the same number of data points cover a smaller area,
making that portion of the pattern more discernible (see Fig. 4). However, if too small a
section of the diffraction pattern is sampled at the PMT, not enough of the fringes will be
included to determine visibility or, as follows, vertical beam-size. Therefore, the challenge
is to find the point at which the portion of the pattern is small enough to resolve the
shape of the waveform but not so small that fringe information is lost. Furthermore, as the
magnification increases, intensity decreases. Ultimately, determining beam-size on a one or
two turn basis would be an ideal objective. Increasing magnification reduces the viability of
this option by further reducing the already sparse number of photons available (see Fig. 5).
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So, increases in magnification need to leave enough photons to facilitate 1-2 turn vertical
beam-size measurements.
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FIG. 3: Simulated data for a 1.00x magnification of the zero order diffraction pattern integrated

over 16 turns
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FIG. 4: Simulated data for a 2.17x magnification of zero order diffraction pattern integrated over

16 turns
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FIG. 5: Simulated data for a 2.17x magnification of zero order diffraction pattern integrated over

1 turn
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II. METHODS

The first objective of this research project has been to write a program which fits data
generated by a 32 channel PMT to the functional form of the intensity pattern as given in
Equation 1. The second objective has been the use of that fitting program to determine the
magnification of the diffraction pattern which yields the best fit to the function. Also, the
program must perform the fit quickly. As stated above, it will run in a DSP, which does
not have the resources of a PC. The results of this research will then be used in ascertaining
optimum specifications for optics in the interferometer.

A fitting program was written in C programming language to minimize the chi squared fit
of the parameterized function for intensity. First, the individual constants at each parameter
were consolidated into one parameter. For example, 2 π w

f λ
became a2. Next, an x-axis

translation was introduced into the equation. This parameter (a3) accounts for the fact
that the interference pattern will be centered at some point other than at zero. Finally, a
phase offset (a6) was introduced. Phase offsets in the fringes arise from slight misalignments
of the light source, lens or slits in the interferometer. With the phase offset and x-axis
translation, the intensity function is given by the following equation:

I(x) = a1

[

sin(a2x− a3)

a2x− a3

]2

[1 + a4 cos (a5x− a6)] (3)

And the χ2 function is given by:

χ2 =
n
∑

i=1

[

(yi − I(xi))

σi

]2

(4)

where the summation is the sum of the 32 data points generated by the PMT and σi is the
variance at each point. If, for the purpose of simplifying the fitting function, we assume that
the variance at each point is uniform, σi

2 can be moved to left side of the equation. The
minimization is, then, actually performed on σSD

2χ2 and is given by the equation:

σSD
2χ2 =

n
∑

i=1

[yi − I(xi)]
2 (5)

In the limit of fitting data from only a few turns, this assumption will not be rigorously true
due to the Poisson statistics inherent in the data. However, the idea is that fits are made
more quickly with fewer parameters in the fitting algorithm. The hope is that the program
will return the other parameter values with a degree of precision accurate enough to preclude
an explicit declaration of variance for each point in the fitting algorithm. Fortunately, the
assumption has been correct.

The fitting program minimizes the modified chi squared function by calling two subrou-
tines presented in Numerical Recipes in C. The first is frprmn.c which uses the Polak-Ribiere
variant to minimize each of the parameters in the chi square function. This is accomplished
in part with the second NR subroutine dfridr.c, which finds the derivative of the chi squared
function at particular points, using Ridder’s method [2].

When given a data set and ”best guess” set of parameters, the program will return the
fitted parameters and the number of iterations to convergence. Smaller iteration values are
indicative of quick convergence.
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The first step in determining the robustness of the program was to generate data using
Equation 3. The x-axis translation mentioned earlier was scaled to mimic the projection of
the intensity pattern onto the center of the 32 channel PMT. I0 values (a1 in Eq. 3) were
scaled to reflect intensity in terms of the number of photoelectrons detected at each channel,
based on data gathered though previous experiments (where L=5m, λ=500nm, w=250µm,
d=2mm, and f=0.3m). For one turn of one bunch, approximately 100 photo electrons are
contained in the center 20% of the middle fringe.

Secondly, errors were imposed to reflect the limitations of the device. First, a counting
error was imposed by giving generated intensities a Poisson distribution. Next, this altered
intensity was given a 0-3.6% Gaussian distribution error to simulate a systematic gain error
peculiar to the PMT. Lastly, a 1% flat error was added to account for noise generated as
the signal is processed in the ADC.

Finally, a series of fits were performed on generated data with errors as described above.
Magnifications were varied from 1.00x to 2.17x in an effort to determine the optimum portion
of the the diffraction pattern with which to work. Figure 6 gives a graphical representation
for the various magnifications used in the fits. Additionally, intensities were varied to reflect
integrations of light from one bunch for 2 to 120 turns around CESR. This latter variation
gave insight into the viability of measuring vertical beam-size on a few turn basis. To
determine the robustness of the fitting routine over a variety of beam-sizes, vertical beam-
sizes were varied from 100 to 400 microns. However, due to time constraints the majority
of the research has been conducted with a beam-size of 150 microns.

Graphical Representation of Magnification

1.00 1.13 1.26 1.39 1.52 1.65 1.78 1.91 2.04 2.17

Magnification

FIG. 6: Portions of the intensity pattern observed at the PMT with various magnifications

III. RESULTS

Figure 7 shows the routine’s performance in fitting a 150 micron bunch with 2-120 turn
integrations. The fractional error begins to level off around 12-16 turns. A 16 turn integra-
tion is also where fit failures go to zero (see Tab. I) and fitting is reasonably uniform for all
magnifications. For these reasons, a 16 turn integration is a good place to begin exploring
the program’s behavior.

To get a feel for how the fractional error in determining vertical beam-size varies with
visibility, let us revisit Equation 2. A little calculus and algebra will yield the relationship:

∆σ

σ
=

∆V

V

1

2lnV
(6)

Using 16 turn integrations, the program fits with a RMS of ∆V at 0.027 for visibilities
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Fractional Error in Beam-size for a 150 Micron Beam
(50,000 fits/data point)
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FIG. 7: RMS of Fractional Error in Beam-size

ranging from 0.17-0.75. With this value in Equation 6, Figure 8 shows the limits for resolving
vertical beam-size as the visibility changes.

After calculating beam sigma from visibility, the solid line in Figure 9 shows the fractional
error in beam-size versus beam-size. When several sets of 50,000 fits are added to the graph,
the robustness of the program is readily apparent. The results are in excellent agreement
with predictions, determining beam-size with about 93% accuracy for a 150 micron beam.
In addition the percentage of failures in this region is essentially zero (Tab. II). In fact, the
percentage of fit failures is reasonably small for all the beam-sizes tested in the range. When
the routine is implemented in a working interferometer, a failed fit will simply be identified
and a new integration will be taken.

With regard to the prospect of determining beam-size on a two turn integration, for a
150 micron beam, the fitting program continued to work quite well. However, accuracy
drops approximately 3% for magnifications ranging from 1.00x to 1.65x (see Fig. 10). For

TABLE I: Fit Failure Rates for 2-16 Turns Integrations: 5000 Fits/Magnification

Magnification 2 Turns 4 Turns 8 Turns 12 Turns 16 Turns

1.00x 0.00% 0.00% 0.00% 0.00% 0.00%

1.13x 0.02% 0.00% 0.00% 0.00% 0.00%

1.26x 0.02% 0.00% 0.00% 0.00% 0.00%

1.39x 0.02% 0.00% 0.00% 0.00% 0.00%

1.52x 0.06% 0.00% 0.00% 0.00% 0.00%

1.65x 0.00% 0.00% 0.00% 0.00% 0.00%

1.78x 0.14% 0.00% 0.00% 0.00% 0.00%

1.91x 0.34% 0.08% 0.02% 0.00% 0.00%

2.04x 0.58% 0.12% 0.00% 0.00% 0.00%

2.17x 1.50% 0.42% 0.04% 0.02% 0.00%
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FIG. 8: Fractional Error in determining beam-size versus visibility for 16 turn integrations
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FIG. 9: Fractional Error in determining beam-size versus beam-size for 16 turn integrations

magnifications greater than 1.65x accuracy begins to drop rapidly. In addition, as reflected
in Table III, the failure rates start increasing at 1.78x. When vertical beam-size is increased
to 325 microns, the accuracy increases to about 95% (see Fig. 11). This result is reasonable;
as beam-size increases visibility decreases, which equates to greater intensity at the bottom
of the fringes. Greater intensity at the bottom of the fringes, just as with the 16 turn case,
means a more accurate fit. However, failure rates also increase (Tab. II). The increase in
failure rates at greater magnifications is likely due to the program’s inability to resolve the
fringes with the reduced visibility and only 32 data points.

Finally for a 150 micron beam, a magnification of 1.39x provides the best accuracy
in beam-size measurements. Fits performed at this magnification have the most uniform
distribution for integrations ranging from 2-120 turns (see Fig. 12). Furthermore, at 1.39x
magnification the program experiences only one fit failure at a two turn integration.
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FIG. 10: The vertical axis gives the RMS of fractional error in beam-size measurements as a

function of magnification and gain error. The fits were made on data simulating a 150µm beam

integrated over two turns. (fit failures as presented in Table III were excluded)
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FIG. 11: The vertical axis gives the RMS of fractional error in beam-size measurements as a

function of magnification and gain error. The fits were made on data simulating a 325µm beam

integrated over two turns. (fit failures as presented in Table III were excluded)
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RMS of Fractional Error in Beam-size
Nine Fringe Pattern: 2-120 Turns / Poisson Statistical Error / 
0-3.6% Gain Error / 1% Flat Noise Error/1.39 Magnification

(Beam-size 150 Microns)
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FIG. 12: The vertical axis gives the RMS of fractional error in beam-size measurements as a

function of turns of integration and fractional gain error. The fits were made on data simulating a

150µm beam with a 1.39x magnification of the diffraction pattern.
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TABLE II: Fit Failure Rates for 16 Turn Integrations: 50,000 Fits/Beam-size

Bunch-size Percent Error in Determining Beam-size Failure Rate

100µm 13.97% 0.002%

150µm 6.74% 0.000%

200µm 4.24% 0.002%

250µm 3.48% 0.01%

300µm 2.98% 0.09%

350µm 2.75% 0.44%

400µm 5.93% 1.54%

TABLE III: Fit Failure Rates for 2 Turn Integrations: 5000 Fits/Magnification

Magnification 150µm Beam-size 325µm Beam-size

1.00x 0.00% 0.02%

1.13x 0.02% 0.08%

1.26x 0.02% 0.04%

1.39x 0.02% 0.24%

1.52x 0.06% 0.48%

1.65x 0.00% 1.18%

1.78x 0.14% 2.70%

1.91x 0.34% 4.96%

2.04x 0.58% 7.96%

2.17x 1.50% 10.28%

Unfortunately, time constraints prohibited extensive evaluation of the impact of magnifi-
cation on the program’s performance. Although the effects of magnification were examined
in detail for a 150 micron beam, additional data analysis is required for for beam-sizes
between 100-400 microns.

IV. ACKNOWLEDGMENTS

Special thanks to Mark Palmer-Cornell University, Rich Galik-Cornell University, and
the National Science Foundation for providing me with the opportunity to succeed. I’d also
like to thank the other REU students for a memorable summer.

This work was supported by the National Science Foundation REU grant PHY-0101649
and research co-operative agreement PHY-9809799.

[1] M. Klein, Optics, 257-270, Wiley: New York, (1970)

[2] William H. Press, et al., Numerical Recipes in C, 186-189 and 420-425, CUP: Cambridge, (1992)


