Simulation of CESR-c Luminosity from Beam Functions

Abhijit C. Mehta
Trinity College, Duke University, Durham, North Carolina, 27708
(Dated: August 13, 2004)

It is desirable to have the ability to compute quickly and accurately the expected
luminosity of a given CESR-c configuration. By replacing a number of numerical
integrals with analytic integrals, we improve an algorithm that computes luminosity
and attempt to develop a useful Fortran 90 subroutine that can calculate luminosity
accurately and efficiently. Although our algorithm currently returns an answer that
is incorrect by a modest factor, preliminary results indicate that it is not far from
becoming a useful tool.

I. INTRODUCTION

In accelerator physics, luminosity is a measure of the rate of interactions per unit area
when two beams collide. It is given by:

o N1N2fbb

where £ is the luminosity, N; and Ny are the number of particles in each bunch of the
positron and electron beam, respectively, f,, is the frequency at which bunches collide in
the interaction region, and A is the cross-sectional overlap. It is desirable to configure
CESR in a way that gives a high luminosity, since higher luminosities translate into more
particle-particle interactions that can be studied.

Luminosity can be computed by geometrically calculating the overlap of two collid-
ing bunches. If the distribution of a bunch centered at s is described by a function
flz, 2 y,y, 2,0,s), (where x,2',y,y’ are the horizontal and vertical phase-space coordi-
nates, z and (= AFE/FE) are the longitudinal phase-space coordinates, and s(= ct) is the
independent time-like variable), then, using Eqn. 1, one can write the luminosity as: [1]

L= NiNof, [Vi [dsi [d®Va [dsafi(p1) fala) -
d(s1+ 21 — S2+ 22)0(s1 + 82)0(z1 — 22)0(y1 — y2) (2)

where the J-functions represent the constraint that particles in the two beams be in the
same physical location in order to interact.

Using Eqn. 2, it should be straightforward to create a computer program that calculates
the luminosity expected from a particular CESR-c configuration. We assume that the bunch
distribution functions are Gaussian, and perform the integration. Though this task seems
straightforward, it is somewhat laborious; we have an integral over fourteen variables, and
even though the presence of the four delta functions in Eqn. 2 means that we only effectively
have to integrate over ten variables, it is still a CPU-intensive task if all of these integrals are
computed numerically. Last year, an algorithm was developed to perform this integration
numerically; the runtime, however, was too long to be practical. [2]. By performing some
of the integration analytically, we should be able to drastically reduce runtime.

II. INTEGRATION

We can separate out the transverse integrals from Eqn. 2 and evaluate them analytically.
First, we need to normalize the distribution functions to have unit values when integrated
over all phase space. Following the steps taken in Appendix 2 of “Geometrical Calculation
of Luminosity”, we get, for each beam i: [1]

1
(27m)5/%20, ; [%0, ddey i€y exp(— 02)

2
206

Ki:

(3)

Taking advantage of the d(zq — x2)d(y1 — y2) term in Eqn. 2, we can write the transverse
integrals in the form:

9(21>51>$1 ; 22,52,82) =

K\ K> / dz dy, / dodz,dysdyl exp(E) (4)
The argument, F, of the exponential in Eqn. 4 can be written in the form:
—2F =q"Qq+ AqTQq + AqTwAq (5)

where q© = (2}, Y}, To, T, y2, ¥5), Aq is the difference between the closed orbit trajectories
of the two beams, and Q, Q, and w are 6x6 coefficient matrices. ! Using a singular
value decomposition, we diagonalize Q with a transformation R into new coordinates q, =
(r1,79,73,74,75,76)" such that q = Rq,. Writing Eqn. 5 in terms of these new coordinates,
we have:

—2F = qTRTQRq, + AqTQRq + AqTwAq (6)

Since Q is diagonalized, the eigenvalues \; of Q are given by \; = [RTQR];. It is now
straightforward to integrate the right hand side of Eqn. 4:

g(21, 01, 515 29,00, 52) = Kle/_ dry...drgexp(E)

T KK, d qu'
- - 4 7
T S 2) @)

Due to the 0(s; + 21 — S2 + 22)d(s1 + S2) term in Eqn. 2, sq, 89, 21, and zy are not all
independent; we can set s, = —s; and zy = —2s; — 21, and write g as a function ¢* in terms
of only 4 variables. Furthermore, since g only depends on the longitudinal position (s + z1),
and not on s; and z; individually, we can write g as a function G with only 3 arguments:

g(21,01, 815 29, 02, S2) = g™ (21,01, 51,02) = G(s1 + 21,01, 02) (8)

Now that we have evaluated the transverse integrals analytically, we can simplify Eqn. 2
to write an expression for luminosity that only requires us to integrate over four longitudinal
variables. In the following expression for luminosity, 2.4 refers to the longitudinal spatial

L Appendix 2 of “Geometrical Calculation of Luminosity” by M. Billing describes in detail how to explicitly

calculate the values of these matrices. [1]

displacement of the beam from the interaction point at the nominal collision time and 0§,y
refers to the fractional energy deviation of the beam with respect to the nominal energy.

L = N,Nofun /_ ds1dzd8,d6,G (51 + 21,01, 85) -

(21 - Zorbz‘t,1)2 (51 - 5orbz't,1)2 (—251 2 Zorbz‘t,2)2 (52 - 5orbz't,2)2 9
exp(= 20?2 - 202 - 202 a 202))

III. PROGRAM DESIGN

Last year, a Fortran 90 program called test_lum calc was written to calculate the
luminosity of a given storage ring configuration using Eqn. 2. [2] This summer, I modified
the program so that it uses Eqn. 9 to calculate luminosity. Last year’s version of the program
needed to numerically integrate over 10 variables; now we only integrate numerically over
4 variables, though it is somewhat more complicated to construct the function G which we
need to integrate. Below is an outline of our algorithm:

program test_lum_calc:

read lattice info

generate mesh

generate matrices from Eqn. 6

iterate over s;+ 21, 01, Oa:

— calculate G(s; + z1,01,02), store values
iterate over si,21,01,09:

— sum values to get the integral in Egn. 9
normalize and use Eqn. 9 to output Luminosity.

The first part of our program reads in information about the bunch length, beam offsets,
and CESR lattice that will be used for our luminosity calculation. In the next two steps,
we construct a “mesh” in phase-space over which we shall integrate. The size of this mesh
scales to the standard deviation of the bunch distribution function. First, we calculate and
store Twiss parameters and other useful basic data at each mesh point. Then, we calculate
and store the values of the matrices from Eqn. 6 — Q, €2, and w — at each mesh point, and
we diagonalize Q to get R and the \’s.

Once we have stored the necessary data at each mesh point, we begin to integrate. First,
we calculate and store the values of G(s; + z1,d1,d2) at each (s1 + 21, d1, d2) coordinate.
When we use a fine mesh (i.e., a large number of mesh points per standard deviation (o) of
the bunch distribution), this is the most time-consuming step. ? The next step iterates over
s1,721,01 , and 09 to calculate the integral in Eqn. 9, using the stored values of G. Finally,
we use Eqn. 9 to output the correctly scaled value of the chosen lattice’s luminosity. Our
program is approximately 1400 lines of Fortran 90 code.

2 We do the calculation of G separately from the integration for two reasons. First, calculating G at each
separate value of s; and z; would result in unnecessarily duplicated effort since G is a function of s + 21,
not s; and z; individually. In addition, using three nested do loops to store values in an array without

summing those values is a process that can be easily optimized for multi-CPU systems.

IV. TESTING

We tested our program on the DEC Alpha “CESR2F” using a bunch length of 10 mm
and the “12WIG_CL_20040315_V1S” lattice. Table I contains some basic data which we
obtained by running our program with different mesh sizes. The mesh size scales with o,
and we expect to get more accurate results from larger mesh sizes. Table II contains data
that we collected using last summer’s version of test_lum_calc, which performed all of the
integrations numerically.

First, looking at Table I, we notice that there is very little variation in the luminosity
values that we get when we run our program with different mesh sizes. After numerically
integrating a simple one-dimensional Gaussian distribution, I found that this small amount
of variation in luminosity is consistent with what one would expect to see when integrating
a Gaussian distribution. Furthermore, these results are much more stable than the results
we get from running last summer’s program (Table II), so our results look promising.

Comparing run times, our new program is much faster than last summer’s. The times for
integration seem to increase like n® or n*, as we would expect since we integrate over four
variables. Unlike last year’s program, our program is fast enough to calculate luminosity in
a reasonable amount of time with a mesh size that will yield an accurate result.

TABLE I: Run times and variation in luminosity for different mesh sizes.
Note that mesh size scales with o.

Number of mesh Luminosity Mesh Generation Integration Total Run
points per o (em™2s71) Time (s) Time (s) Time (s)

1 3.280 x 10%° 41 2 43

2 3.272 x 10% 75 16 91

3 3.263 x 10% 120 38 158

4 3.285 x 10% 165 72 237

5 3.269 x 10% 198 174 372

6 3.266 x 10% 245 300 545

7 3.254 x 10% 339 529 868

TABLE II: Run times and variation in luminosity for last year’s version of test lum calc

Number of mesh Luminosity Mesh Generation Integration Total Run
points per o (em™2s71) Time (s) Time (s) Time (s)
1 2.67 x 1030 33 231 264
1.04 x 103! 76 22332 22408

To check for the possibility that the beams are missing each other in our simulation (thus
giving us lower than expected luminosity values), we performed an offset scan in z, y, and
z in which we adjusted the offset of the beams in each of the three spatial dimensions (one
at a time) and measured the effect of the offset on calculated luminosity. Figure 1 contains
the results of our scan. We expect that the curves for x and y will be Gaussian because of
the following argument: Consider the case of the z offset. If we have an offset of Az, then

Relative Luminosities Vs Centroid Offset

1.00 e W“‘Wmh

090 =" = N
i FE | NN B
0.70 [J \‘. \

il S X

£ o060 / |

el U B
e N
i v . y |v Expected
o

= 0.20 / 3

0.10+ 3

0-00 I
-2 -1 0 1 2

Offset (sigma)

FIG. 1: Plot of relative luminosity (L£/L|offset=0) Vs centroid displacement in o’s for z, y, and z,
along with expected curve for x and y.

we are integrating an expression that looks like:

2

[expl—) exp(- L5 (10)

—c0 202 202

Simplifying the argument of the exponential in Eqn. 10, we have:

Az Az
/OO exp(— [2(1’ — 7)2 + Al’z — T]
—00 20’2

) (11)

Now, we can factor out an exp(—%‘f) from Eqn. 11 and integrate the rest of the expression to
get a constant; thus, it is clear that as a function of offset, we expect the relative luminosity
curve to have a Gaussian shape, specifically, exp(—%). The same argument holds for y.
Our actual curve for x is very close to our expected curve; the variation from the expected
curve in y is probably due to differences in the beam sizes and small crossing angles that
our program takes into account.

We expect the longitudinal curve to be different, however. Near the interaction point,
B(s) = 0+ ;—i, (where /3 describes the envelope function of the beam around the ring,
and (* denotes the value of 3 at the interaction point). Luminosity is inversely proportional
to v/ near the interaction point. Using o, = 10mm and 3* = 14mm, we expect that at

an offset of 20,, the luminosity should be approximately 0.82 of its value at zero offset.
Our actual result is close to this expected value. The correspondence between our predicted
results and actual data for the offset scan leads us to believe that our algorithm is working
properly.

Despite the promising nature of our results, they do not match up with the values of
luminosity we would predict to get. We can estimate luminosity by using Eqn. 1 and
substituting in values that are specific to the lattice we used. Doing this gives us a value of
5.7 x 10% em~2s71, which is more than an order of magnitude greater than the result we
get in Table I. The code is quite complex, and so it is quite possible that there is a factor
missing from the computation. Some error testing leads us to believe that the problem may
be related to the singular value decomposition which we perform.

V. CONCLUSIONS

Our results indicate that our algorithm, though still not correct, has great potential to
become a useful tool for calculating luminosity. Compared to last summer’s version of the
code, our run time is quite short, which was the primary motivation for doing this project.
Additionally, we demonstrated that the technique of collecting terms into a large exponential
and manipulating the argument of that exponential with matrix operations is a good way
to attack certain types of integration problems.

The order of magnitude difference between our result and the expected result still needs
to be dealt with, however. The small amount of variation that we observe when we change
the mesh size, combined with the results of our offset scan, suggests that there is not a
fundamental error in our calculation. This leads us to believe that our method is basically
correct, but that we are off by some nontrivial factor at some point in the calculation.
Hopefully, this problem will be solved soon and our program will become a useful tool for
CESR lattice design and testing.

VI. ACKNOWLEDGMENTS

I would like to thank Dr. Michael Billing of the Laboratory for Elementary-Particle
Physics at Cornell University for being so generous with his time and for all of his patience
in guiding me through this project, and Prof. Rich Galik for organizing the Cornell LEPP
REU program. I learned a great deal this summer, and I had a lot of fun participating in
this REU program.

This work was supported by the National Science Foundation REU grant PHY-0243687
and research co-operative agreement PHY-9809799.

[1] Billing, M. “Geometrical Calculation of Luminosity,” 10 January, 2002.
[2] Marang, G. “Luminosity Calculation from Known Beam Functions.” 16 August, 2003.

