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Abstract

This paper gives details of computing the numerical values of the
radial wave function at the origin of heavy quark-antiquark system,
|Rn`(0)|

2, and its derivatives in potential quark models. These quan-
tities provide numerical estimates of the non-perturbative parameters
in Non-Relativistic QCD (NRQCD), an effective field theory describ-
ing decay and production of heavy quarkonium states. In particular,
we computed wave functions at the origin for three different spheri-
cally symmetric potentials describing cc̄, bb̄ and cb̄ bound states. The
methods used for calculating the radial wave function at the origin
are covered, along with the code used to produce the values given.
Comparisons are made with values obtained by Eichten and Quigg [1]
and Quigg and Rosner [2].

1 Introduction

NRQCD is a non-relativistic approximation to QCD for heavy quark sys-
tems. Its predictions can be systematically improved by adding higher-order
terms in heavy quark velocity v and strong coupling αs. NRQCD makes it
easier to deal with the multitude of scales (mq, mqv, mqv

2, ...) appearing
in the calculation of production and annihilation rates of heavy quarkonium
states. It allows the separation of nonrelativistic physics, formulated in terms
of nonperturbative parameters, and relativistic effects absorbed in the coef-
ficients of those parameters and written as perturbation series in αs. These
parameters cannot be computed within NRQCD but can be assigned certain
power of v, then fixed by experimental data, or computed with models. A



computation of those parameters in potential quark models is the main goal
of this paper. We describe our method and results for QQ̄ states in the
next three sections. Section 5 describes the ongoing effort to extend these
calculations to a computation of production rates of heavy hybrid states. In
particular, we would be able to see if the production mechanisms of the re-
cently discovered X(3872) state are consistent with its being a hybrid cc̄g
state.

2 Quark-antiquark Systems

Heavy quark-antiquark pairs can be adequately described by the reduced
radial Schrödinger equation

un`(r) ≡ rRn`(r)

u′′n`(r) = [Veff(r) − εn`]un`(r), (1)

the effective potential

Veff(r) ≡ 2µV (r) +
`(`+ 1)

r2

with reduced mass
µ ≡

mamb

ma +mb

composed of constituent masses ma and mb and scaled energy eigenvalue

εn` ≡ 2µEn`.

2.1 Potentials and Parameters

There are a number of phenomenological potentials for modeling cc̄, bb̄ and
cb̄ systems. Potentials are generally constructed from the concepts of linear
confinement and asymptotic freedom, which are covered in detail elsewhere
[5]. Generally, parameters for the these potentials are found by fits to exper-
imental data, allowing variation. The potentials[1] utilized in this paper are
the Cornell potential,

V (r) = −
κ

r
+

r

a2

with parameters

mc = 1.84 GeV/c2, mb = 5.18 GeV/c2, κ = 0.52, a = 2.34 GeV−1 (2)
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|Rn0(0)|2

Level Power Law Logarithmic Cornell
cc̄ Analytic(3) Fit Analytic(3) Fit Analytic(3) Fit

1S(n = 0, l = 0) 0.9786 0.9787 0.7955 0.7955 1.4589 1.4584
2S(n = 1, l = 0) 0.5446 0.5446 0.4059 0.4059 0.9298 0.9297
3S(n = 2, l = 0) 0.3900 0.3900 0.2766 0.2766 0.7931 0.7929

Table 1: Values from (3) and curve fits for S levels of the cc̄ meson

the logarithmic potential,

V (r) = −0.6635GeV + (0.733GeV) ln(r × 1 GeV)

mc = 1.5 GeV/c2, mb = 4.906 GeV/c2

and the power-law potential,

V (r) = −8.064 GeV + (6.898 GeV)(r × 1 GeV)0.1

mc = 1.8 GeV/c2, mb = 5.18 GeV/c2

3 Numerical Solutions

Numerical solutions to the reduced radial Schrödinger equation(1) are ob-
tained by searching for εn` values with which the wave function obeys the
boundary conditions u(0) → 0 and u(∞) → 0, following from normalization[3],
and the desired n value, corresponding to the number of nodes in the radial
wave function. The accompanying code written for Mathematica 5 to ac-
complish this task is based on the work in [3].

3.1 Wave Functions at the Origin

Values at the origin for ` = 0 were obtained by the equation[4]

|ψ(0)|2 =
µ

2π~2

〈

dV (r)

dr

〉

(3)

and
ψn`m(~r) = Rn`(r)Y`m(θ, φ).

For ` > 0 a curve fitting routine was used to estimate the function through
the origin.
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3.2 Origin Values for ` > 0

Due to the singularity at r = 0 in the radial wave function, an approximation
for 0 ≤ u(r) ≤ δ is made, where δ is a small number proportional to the step
size h by δ = h/10 and used to account for the singularity[3]. A polynomial
with the zeroth order coefficient set to 0, in accordance with the boundary
conditions, is fit to the reduced radial wave equation from within the interval
δ ≤ r ≤ rex, where rex is the first extremum point. Since R(0) = 0 for

` > 0, we find |R(`)(0)|
2
; first fitting u(r), dividing the polynomial by r, then

deriving the polynomial and setting r = 0. The number of data points fit is
determined by the prescribed stepsize and fit interval, and the order of the
polynomial is determined by the shape of the resulting wave function within
that interval. A fifth degree polynomial with h = 10−3 through the interval
10−4 ≤ u(r) ≤ 0.1 was used in this study.

A comparison of |Rn0(0)|2 values using equation (3) and the curve fitting
technique is displayed in Table 1 to show the accuracy of the procedure.

4 Results

Table 2 contains radial values of S, P , and D excitation levels of the charmo-
nium and bottomonium mesons under three potentials. S values are found
using (3), and greater ` states are found with the curve fitting method. The
values at the origin obtained in [1] are displayed as comparison.

4.1 Model Discrepancies

The given models should adequately predict the total mass of the systems
they describe; however, the total mass of the cc̄ meson, as determined by
the Cornell potential with the previously given set of parameters (2), has a
difference of 0.841 GeV with the experimentally observed value. A change of
parameters[2],

κ = 0.506, a = 2.429 GeV−1, (4)

mc = 1.37 GeV, mb = 4.79 GeV,

produces values that are closer to those found experimentally and given by
the other potentials.
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5 Outlook and Ongoing Work

QCD predicts the existence of the states where gluon degrees of freedom
manifest, the so-called hybrid states, so it is imperative to look for the signs
of those states. A recently discovered hidden-charm meson, the X(3872),
could be interpreted as a hybrid state. In particular, it has a mass greater
then the energy threshold for production of the pair of D-mesons DD̄, so,
depending on its quantum numbers, it could decay prominently to DD̄. This
decay mode, however, has not been found. An observation can be made that
this fact is consistent with the supposed properties of charm hybrid states [6],
at least in the framework of Isgur-Paton flux-tube model [7] and some related
models.

We compute the production rate for X(3872), a recently discovered me-
son, in pp̄ collisions at Tevatron and in B-decays, assuming the hybrid inter-
pretation of this state, using the non-relativistic QCD approach to production
and decays of heavy hybrid states [6]. The basic results for production rates
are expressed in factorized form, separating the short-distance dynamics of
cc̄ quark production from the non-perturbative parameters describing the
evolution of the cc̄ pair into the hybrid charmonium state. As in the case
of NRQCD, those parameters can be estimated in a quark model in terms
of the product of the overlap integral for the glue wave function (assumed
to be a number of order one) and the value of quark wave function at the
origin. These values are thus necessary in determining the validity of this
interpretation.

The Isug-Paton flux-tube model potential for hybrid charmonium states
is

V (r) = −
a

r
+ c+ br +

π

r
(1 − exp−fb1/2r)

with parameters

a = 0.5, mc = 1.77 GeV/c2, b = 0.18 GeV2, c = −0.7 GeV2, f = 1.

This potential is used to the calculation of the values of cc̄ wavefunction at
origin.
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|R
(`)
n` (0)|

2

Level Power Law Logarithmic Cornell
cc̄ Paper [1] Paper [1] Paper [1] Paper (4)

1S(n = 0, l = 0) 0.978 0.999 0.795 0.815 1.458 1.454 0.784
2S(n = 1, l = 0) 0.544 0.559 0.405 0.418 0.929 0.927 0.544
3S(n = 2, l = 0) 0.390 0.410 0.276 0.286 0.793 0.791 0.476
2P (n = 0, l = 1) 0.123 0.125 0.076 0.078 0.130 0.131 0.058
3P (n = 1, l = 1) 0.126 0.131 0.073 0.076 0.185 0.186 0.085
3D(n = 0, l = 2) 0.025 0.026 0.012 0.012 0.030 0.031 0.010

bb̄ Paper [1] Paper [1] Paper [1] Paper (4)
1S(n = 0, l = 0) 4.423 4.591 4.705 4.916 14.12 14.05 10.75
2S(n = 1, l = 0) 2.461 2.571 2.401 2.532 5.700 5.668 4.545
3S(n = 2, l = 0) 1.762 1.858 1.636 1.736 4.287 4.271 3.462
2P (n = 0, l = 1) 1.520 1.572 1.472 1.535 2.065 2.067 1.437
3P (n = 1, l = 1) 1.568 1.660 1.416 1.513 2.442 2.440 1.734
3D(n = 0, l = 2) 0.869 0.892 0.737 0.765 0.835 0.860 0.531

cb̄ Paper [1] Paper [1] Paper [1] Paper (4)
1S(n = 0, l = 0) 1.719 1.710 1.508 1.508 3.193 3.184 1.794
2S(n = 1, l = 0) 0.957 0.950 0.769 0.770 1.769 1.764 1.091
3S(n = 2, l = 0) 0.685 0.680 0.524 0.563 1.449 1.444 0.917
2P (n = 0, l = 1) 0.352 0.327 0.220 0.239 0.342 0.342 0.163
3P (n = 1, l = 1) 0.324 0.352 0.212 0.239 0.461 0.461 0.229
3D(n = 0, l = 2) 0.095 0.101 0.051 0.055 0.098 0.102 0.392

Table 2: |R
(`)
n` (0)|

2
for QQ̄ mesons obtained with the method outlined in this

paper and the values from Eichten & Quigg [1] and the change of parame-
ters(4)

7


