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Abstract

Analytic functions fitting parton distribution data are obtained. Methods and exam-

ples of incorporating uncertainty associated with the data are discussed.

This project included two main portions. The first and larger portion involved gaining a
basic understanding of quantum field theory through readings and exercise. I used the textbook
by Zee [1] and covered the following topics: Functional Integration/Wick Contraction, Classical
Fields, The Kleine Gordon Equation and Field Quantization, Source Terms and φ4 Interaction,
Perturbation Theory/Feynman Diagrams for the Klein Gordon Field and QED, Canonical
Quantization, Symmetry/Noethers Theorem, Field Theory in Curved Space-Time, The Dirac
Equation and Quantization of the Dirac Field, The Lorentz Group, Dirac and Weyl Spinors
and 4-Spinor/Clifford Algebra, The Spin-Statistics Connection, Gauge Invariance in QED,
Grassman Algebra and Calculus, Grassman Path Integrals, the Origin of the Inverse Square
Law/Atraction and Repulsion in QFT through Effect of Coupling on Vacuum Energy/Exchange
of Particles, Regularization/Renormalization/Renormalizability, Physical or Clothed Perturba-
tion Theory, Nonrelativistic QFT, The Origin of the Electron Spin Coupling from the Dirac
Equation, Anomalous Magnetic Moment, Symmetry Breaking. I have also worked through
the following problems in this book: I.2.1-2, I.3.2, I.4.1, I.7.1-4, I.8.2-4, II.1.1-6, II.1.9,II.2.1,
II.3.1,II.3.4,II.5.1-2, II.6.2, II.7.1, III.1.1-2.

The second portion of the project was to obtain analytic fits to numerical parton distribution
functions (PDFs) available on the web. Below, I will discuss this segment of the project and
present its results.

1 Introduction

Complication arises when analyzing scattering experiments involving protons—such as those
being conducted at the Fermilab Tevatron or those planed for the immanent CERN LHC—due
to the fact that the proton is a composite particle. This complication is somewhat circum-
vented, however, in the “deep inelastic” régime where the collisions may be treated as single
interactions between effectively free partons (quarks or gluons). In this manner of treating
the collisions, it is necessary to have knowledge of how the proton’s momentum is distributed
amongst its constituents. This information is supplied in the form of the probability that the
proton contains a certain constituent (parton) with a certain momentum fraction. (Note that
transverse momenta of the partons may be neglected in the “deep inelastic” régime.)
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More specifically, for each parton of species f , a function, ff(ξ, Q
2), called the parton

distribution function (PDF), is typically supplied, which gives the probability distribution in
momentum fraction, ξ (ξ = 0 . . . 1). Here Q2 = −q2 is the invariant momentum-squared transfer
of the collision with q being the momentum transferred through the interaction. In calculation,
ff is typically evaluated at ξ = x, with x ≡ Q2

2p·q
, where p is the initial momentum of the proton.

Hence ξ and x are used interchangeably and ff is typically considered a function of x and
Q2. The variation of the functions ff with Q2, due to an effect known as Bjorken Scaling, is
quite slow, and typically only the rough scale of Q needs to be supplied. Hence, the PDF’s are
frequently represented as functions of x only [2].

The PDF’s must be supplied externally through experimental data since they depend on the
soft processes which determine the proton’s structure as a bound state of quarks and gluons,
and thus cannot be calculated using perturbative QCD [2]. Numerical PDF’s are obtained
by a rather involved extrapolation procedure of experimental data. Such numerical PDF’s are
produced by a number of groups—some of the major ones being Alekhin, CTEQ, MRST, GRV,
and ZEUS—and are available on the web [3]. One may typically find a number of generations
of PDF’s and corresponding data files from each group.

It may often be more convenient, for the theorist, to have some analytic representation of
the PDFs. To meet this need we have endeavored to obtain analytic functions which are in good
agreement with the numerical PDFs described above. We have focused our efforts on fitting
CTEQ’s most recent PDF set—CTEQ6—in conjunction with the table values, CTEQ6m. We
found that the x dependence of the PDFs can be fitted well by polynomials in ln x, while the
Q dependence can be fitted by polynomials in either ln Q or ln ln Q. Once the functional form
is fixed, the problem is reduced to finding the coefficients of the polynomial terms that give the
best fit to the numerical PDFs. We have found such coefficients using Mathematica. In the
sections that follow the analytic fits obtained are presented and described along with methods
and examples of incorporating the uncertainty associated with the original, numerical PDFs.

2 Fits to Central Values

Analytic functions which fit the CTEQ6 numerical PDF with acceptable accuracy — defined
below — have been obtained for all of the partons excluding the t and t̄ quark, and for most
of the region of x and Q for which the numerical PDFs are applicable — 0 < x ≤ 1, 1
GeV≤ Q ≤ 10000 GeV. The reason for the exclusion of t and t̄ is that no numerical PDF
is available for these quarks since their appearance as fluctuations in the proton is highly
suppressed due to their large mass.

For all of the partons, it was necessary to divide the parameter space into six regions,
partitioning the range of x into three portions and the range of Q into two portions. Table 1
below lists these divisions along with functional forms used for the d-quark. The divisions and
functional forms used for the other partons varied only slightly from what is listed.

Tables of coefficients — the aij in table 1 — were produced to represent each fit — one table
for each of the six regions and each of the eleven partons. An example of such a coefficient
table is given in table 2 below which lists the coefficients for the u-quark in the region 0.0001 ≤
x ≤ 0.5, 50 GeV≤ Q ≤ 4000 GeV, to three significant figures.

Associated with the center values for CTEQ6 are uncertainties, available through an online
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Forms for x ∗ f(x,q2) for the d-quark

50 GeV ≤ Q ≤ 4000 GeV

0.0001 ≤ x ≤ 0.5
∑

12

i=0

∑
10

j=0
aij(ln x)i(ln Q)j

0.45 ≤ x ≤ 0.65
∑

3

i=0

∑
3

j=0
aij(ln x)i(ln(ln Q))j

0.6 ≤ x ≤ 0.94
∑

18

i=0

∑
10

j=0
aij(ln x)i(ln Q)j

4000 GeV ≤ Q ≤ 10000 GeV

0.0001 ≤ x ≤ 0.5
∑

12

i=0

∑
6

j=0
aij(ln x)i(ln Q)j

0.45 ≤ x ≤ 0.65
∑

3

i=0

∑
3

j=0
aij(ln x)i(ln(ln Q))j

0.6 ≤ x ≤ 0.94
∑

18

i=0

∑
6

j=0
aij(ln x)i(ln Q)j

Table 1: The regions and functional forms used for analytic fit to the PDF in the case of the
d-quark.
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i � j 0 1 2 3 4
0 -2.42 3.33 -1.98 0.694 -0.156
1 -8.11 11.6 -6.95 2.44 -0.547
2 -6.56 10.6 -6.65 2.39 -0.546
3 4.43 -6.73 4.06 -1.42 0.318
4 7.98 -12.4 7.85 -2.83 0.649
5 -2.68 4.17 -2.53 0.888 -0.199
6 -10.7 16.4 -10.3 3.7 -0.846
7 -8.45 12.8 -8.09 2.92 -0.669
8 -3.44 5.19 -3.27 1.18 -0.271
9 -0.818 1.23 -0.773 0.279 -0.064
10 -0.114 0.17 -0.107 0.0387 -0.00886
11 -0.00857 0.0127 -0.00803 0.0029 -0.000664
12 -0.000268 0.000397 -0.00025 0.0000901 -0.0000206

i � j 5 6 7 8 9
0 0.0232 -0.00228 0.000144 -5.25E-6 8.47E-8
1 0.0812 -0.00798 0.0005 -0.0000182 2.91E-7
2 0.0825 -0.00822 0.000522 -0.0000192 3.11E-7
3 -0.0472 0.00464 -0.00029 0.0000105 -1.69E-7
4 -0.0982 0.00982 -0.000625 0.000023 -3.73E-7
5 0.0297 -0.00292 0.000184 -6.71E-6 1.08E-7
6 0.128 -0.0127 0.000809 -0.0000298 4.82E-7
7 0.101 -0.0101 0.000641 -0.0000235 3.81E-7
8 0.041 -0.00409 0.000259 -9.51E-6 1.54E-7
9 0.00967 -0.000964 0.0000611 -2.24E-6 3.61E-8
10 0.00134 -0.000133 8.44E-6 -3.08E-7 4.96E-9
11 0.0001 -9.97E-6 6.3E-7 -2.3E-8 3.70E-10
12 3.11E-6 -3.09E-7 1.96E-8 -7.13E-10 1.14E-11

Table 2: Coefficient table for the u-quark in region 0.0001 ≤ x ≤ 0.5, 50 GeV≤ Q ≤4000 GeV
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calculator provided by the Durham website [3]. Acceptable fits should surely lie within the range
defined by the upper and lower bounds implied by the center values and these uncertainties.
All of our analytic fits conform to this standard. Further, in the regions specified in table 1,
the deviation of our fits from CTEQ6 center is negligible compared to the uncertainty reported
for the numerical function. This is illustrated in figure 1, which plots the position of our fit for
the u-quark, at Q = 100 GeV, within the upper and lower bounds for the numerical function.
Table 3 lists the range of deviations for each region of the u-quark fit. It is apparent from the
plot that the fit lies very close to center. This property is common to all of our fits in the
regions specified.

0.2 0.4 0.6 0.8

0.2

0.4

0.6

PSfrag replacements

xf(x)

x

Figure 1: Plot of xf(x, Q2) vs. x for the u-quark at q = 100 GeV. Analytic fit is the solid
curve. The upper bound on the numerical value of CTEQ6 is represented by the dotted curve,
the lower bound by the dashed curve.

3 The Incorporation of Uncertainty

The values produced by the numerical function for the parton distributions are of course physical
numbers with associated error. For our analytic PDF’s to be meaningful it is important to
develop a means of incorporating this error into our scheme.

Two approaches to doing so are presented here. The first involves reporting the error in
the coefficients in the tables described above. Since these coefficient tables are essentially the
object of this endeavor, this procedure is the most straightforward. However, as described
below, there are some limitations to this representation of error. To address these limitations
we have developed a second method of incorporating error using error functions.
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Deviations From CTEQ’s Center For u-Quark

50GeV ≤ q ≤ 4000GeV
0 ≤ x ≤ 0.5 2.8E-6% to 0.4%

0.45 ≤ x ≤ 0.65 3E-5% to 1.2%
0.6 ≤ x ≤ 1 2E-5% to 2%

4000GeV ≤ q ≤ 10000GeV
0 ≤ x ≤ 0.5 1.5E-8% to 0.45%

0.45 ≤ x ≤ 0.65 1.4E-6% to 0.6%
0.6 ≤ x ≤ 1 1E-7% to 3%

Table 3: Deviations for the CTEQ6 center value of our fits for the u-quark.

The uncertainty for CTEQ’s PDF’s is not currently available in a format which makes prac-
ticable the generation of precise values of the uncertainty in the coefficients of two dimensional
fits in the case of the first method, and the generation of precise two-dimensional error functions
in the second method. Therefore we merely outline the procedure which may be applied to
generate complete representations of the error once the uncertainty for CTEQ6 is available in a
more convenient form. We also give some examples of coefficient error for some one-dimensional
fits in x, and some examples of one-dimensional error functions in x. Finally we give a rough
example of a two-dimensional error function which was fitted using only ten sample values in
Q, generated manually with the online calculator provided by the Durham site.

3.1 Coefficient Error

Coefficient error may be generated by fitting the upper and lower bounds of the numerical
functions to the form appropriate to the region and then taking the difference of the coefficients
produced with those corresponding to the central fit:

%Errorij = 100 ∗ Max{[(1 + fiterrup)a
up
ij − aij]/aij, [aij − (1 − fiterrdown)adown

ij ]/aij}

Here, %Errorij is the percent-error in the coefficient, aij and aup
ij and adown

ij are the coefficients of
the fits of the upper and lower bound, respectively. We have also included a factor of (1±fiterr)
which takes into account the error associated with the fitting of the upper and lower bounds.
fiterr is the estimated maximum error of the fit of the extremum, and thus (1± fiterr) times
our fit for the upper and lower bounds, respectively, gives a safe over/under estimate for the
bounds. Using these bounds, our coefficient error includes both the uncertainty of the CTEQ
numerical data and the error from our fitting process since we are taking the difference of the
coefficients with our center fit.

The error in the coefficients of the (ln(x))i terms for the u-quark, 0.0001 ≤ x ≤ 0.5, with
Q held fixed at 100 GeV are given in table 4. It can be seen that the percent-error is quite
reasonable in this example. They are in fact the same size as the maximum numerical error
in CTEQ6 on this interval of 5.18%. Table 5 is a similar table for 0.6 ≤ x ≤ 0.96 and Q held
at 5000GeV . This example illustrates a limitation with this approach to representing error.
The fact that the percent-error is so large isn’t necessarily an issue since the maximum error in
CTEQ6 on this interval is 295%, which is roughly the same size. A glance at figure 2 reveals
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Coefficient % Error
(ln(x))0 0.101 9.54
(ln(x))1 0.437 8.91
(ln(x))2 0.543 3.72
(ln(x))3 −0.458 4.93
(ln(x))4 −0.409 5.64
(ln(x))5 0.312 4.88
(ln(x))6 0.521 6.12
(ln(x))7 0.299 6.92
(ln(x))8 0.0959 7.63
(ln(x))9 0.0187 8.28
(ln(x))10 0.00222 8.88
(ln(x))11 0.000146 9.42
(ln(x))12 4.1E − 6 9.88

Table 4: Coefficient error for the u-quark in the region 0.0001 ≤ x ≤ 0.5 and Q = 100 GeV.

the true defect. This plot shows the percent error in CTEQ6 as a function of x. One may note
that the error is reasonable, roughly in the interval up to 0.7. However, there would be no way
of deducing this from the coefficient error in table 5; that is coefficient error gives no sense of
the local behavior of the error.

3.2 Error Functions

A local measure of error may be provided by error functions. The general procedure involves
taking the difference of the lower and upper bounds of CTEQ’s numerical data with the data
values produced by our analytic fits:

%Error = 100 ∗ Max{(upperBound − fit)/fit, (fit − lowerBound)/fit}.

Here, ”fit” is the value produced by our analytic fit. We then fit this percent-error as a function
of x and Q:

ErrorFunction(x, q2) = (1 + fiterr)ErrorFit(x, Q).

Again, we have included a factor of (1+fiterr), providing a safe overestimate of the error which
includes both the error in the original numerical data and the error from our fitting process.

Figure 3 shows a plot of one-dimensional error function in x for the u-quark, 0.0001 ≤ x ≤
0.5, Q = 100 GeV. Figure 4 shows the evolution of a rough, two-dimensional error function
for the u-quark, fitted using only ten sample Q values, generated manually. It represents the
region 0.0001 ≤ x ≤ 0.5, 50 Gev≤ Q ≤ 4000 Gev.

4 Conclusions

We have obtained analytic functions, for each of the partons—excluding t and t̄— and for most
of the parameter space, which fit the numerical PDF, CTEQ6, to acceptable accuracy. We
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Coefficient % Error
(ln(x))0 8.22E − 6 258.
(ln(x))1 0.00103 263.
(ln(x))2 0.0546 271.
(ln(x))3 1.536 271.
(ln(x))4 27.0 264.
(ln(x))5 294. 266.
(ln(x))6 2210. 262.
(ln(x))7 11300. 257.
(ln(x))8 38800. 254.
(ln(x))9 85100. 251.
(ln(x))10 102000. 249.
(ln(x))11 23500. 248.
(ln(x))12 −81800. 248.
(ln(x))13 −31000. 252.
(ln(x))14 83400. 249.
(ln(x))15 −2940. 175.
(ln(x))16 −85340. 252.
(ln(x))17 58800. 248.
(ln(x))18 96200. 255.

Table 5: Coefficient error for the u-quark with 0.6 ≤ x ≤ 0.96 and Q = 5000 GeV.
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Figure 2: %Error in CTEQ6 versus x for 0.6 ≤ x ≤ 0.96, Q = 5000 GeV.
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Figure 3: One-dimensional error function for the u-quark with 0.0001 ≤ x ≤ 0.5 and Q =
100GeV.

have also developed methods for incorporating uncertainty into our scheme and demonstrated
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Figure 4: Q evolution for our rough two-dimensional error function for the u-quark. Each plot
is for 0.0001 ≤ x ≤ 0.96 with Q held fixed.
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that they may be applied to our fits. A thorough account of error for all of our fits may be
produced once the uncertainty for CTEQ6 is available in a more convenient form.
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