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Terahertz radiation can be used to determine the bunch shape of an electron bunch

in an accelerator. Beamlines are often used to transport this radiation away from the

accelerator to a shielded detector for analysis. The current beamline at the Jefferson

Free Electron Laser as well as several variants are analyzed to compare their relative

diffraction losses, which are found to be quite minimal. The transmission of light

pipes are also analyzed as a possible alternative to beamlines and are found to have

significant, but not prohibitive, energy losses.

I. INTRODUCTION

An electron bunch in an accelerator can have instabilities in its configuration that prop-
agate over time and reduce the operating efficiency of the accelerator. Knowledge of the
shape of an electron bunch allows these instabilities to be detected so that the accelerator
may be tuned to minimize them. The shape of an electron bunch can be determined by
measuring the intensity spectrum of the coherent radiation in the far infrared (Terahertz)
region. For a bunch of N electrons, the intensity of coherently emitted radiation is propor-
tional to N2, while the intensity of incoherent radiation is directly proportional to N . This
amplification eases the measurement of the intensity spectrum and thus allows for a more
accurate determination of the bunch shape.

Even so, various factors can hamper an accurate measurement of the intensity spectrum.
As the high X-ray levels near an accelerator can damage a THz detector, the detector must
be placed in a shielded location spatially separated from the accelerator. Most often a
beamline is used to relay the THz radiation from the accelerator to the detector. Spatially
separating the detector from the accelerator allows energy to be lost due to diffraction. In
addition the beamline itself can act as a low frequency cutoff. This paper analyzes the
diffraction losses of the beamline at the Jefferson Free Electron Laser and several variations
upon this design as well as the losses of simpler beamlines and light pipes.

II. BACKGROUND THEORY

1 It is known that a single electron has an intensity spectrum I(ω) proportional to the
square electric field E,

I(ω) ∝ |E|2. (1)

This can be extended to the case of a bunch of particles emitting coherently at a distance R
from the detector, where R is much greater than the size of the bunch. The total intensity

1 The derivation in this section closely follows that in [1]
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spectrum seen by the detector is found to be

Itot(ω) = I(ω)
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where rj is the location of the jth charge and n is a unit vector pointing to the jth charge.
This can be rewritten by expanding the double sum

Itot(ω) = I(ω)
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Taking the average of the bracketed term with respect to position and assuming the particles
are uncorrelated gives a relation between the intensity spectrum and the form factor F (ω).

Itot(ω) = I(ω) [N +N(N − 1)F (ω)] (4)
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By substituting the longitudinal particle distribution S(z) in for S(r)

S(z) =
∫

⊥
S(r)dxdy, (6)

we relate the form factor to the longitudinal distribution
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By assuming the bunch is symmetric about z = 0, S(z) can be solved for with the inverse
Fourier transform of F (ω)

S(z) =
1

πc

∫ ∞

0
dω

√

F (ω) cos
(

ωz

c

)

. (8)

While this works well for a symmetric bunch there is no reason why the bunch must be
symmetric; using this method any information about any bunch asymmetry will be lost.
In addition, this demands that the maximum of the longitudinal distribution be at z = 0,
which does not have to be the case, even if the bunch is symmetric about z = 0. It’s easy
to imagine a dumbbell shaped bunch with a local minimum at z = 0.

Another method of analysis can be used by which both the phase and the amplitude of
the form factor are found, which allows for the shape of aysmmetric bunches to be calculated
as well. Define

Ŝ(ω) ≡
∫ ∞

0
dzS(z)ei(ω/c)z ≡ ρ(ω)eiψ(ω), (9)

by which
F (ω) = S(ω)S∗(ω) = ρ2(ω). (10)

Taking the natural log of Ŝ(ω)

ln Ŝ(ω) = ln ρ(ω) + iψ(ω), (11)
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allows a Kramers-Kronig relation to be written for the real and imaginary parts in the form
of a minimal phase ψm(ω) and a Blaschke product ψBlaschke(ω)

ψm(ω) + ψBlaschke(ω) = −
2ω

π
PV
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0
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j



 , (12)

where the ω̂j’s are the zeros of Ŝ(ω) in the upper half of the complex plane.
In general the Blaschke product can not be determined, but there are certain special cases

in which it can be neglected. As zeroes along the real axis make an insignificant contribution
to the total sum, and Titchmarsh’s Theorem shows that as the real axis goes to infinity
the zeroes tend towards the real axis, only zeros close to where the intensity spectrum is
measured have any effect on the phase. If there are no nearby zeroes the Blaschke product
can be ignored and the minimal phase as seen in Eqn. 12 is a good approximation for the
total phase. Adding

−
2ω

π
PV
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0
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ln ρ(ω)

x2 − ω2
= 0, (13)

to Eqn. 12 removes the singularity at x = ω, and the minimal phase is found to be

ψm(ω) = −
2ω

π

∫ ∞
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. (14)

Having measured the form factor directly, and thus knowing ρ(ω), the inverse Fourier trans-
form of Eqn. 9 gives the longitudinal bunch distribution, S(z),

S(z) =
1

πc

∫ ∞

0
dωρ(ω) cos

[

ψm(ω) −
ωz

c

]

. (15)

III. ZEMAX

The optical engineering program ZEMAX was used to model and analyze the current
JFEL beamline as well as several variations. In ZEMAX optical designs are modelled by
specifying surfaces. Creating a simple thin glass lens requires specifying two surfaces; the
front and back faces. ZEMAX can be used in two modes: sequential and non-sequential. In
sequential mode, surfaces are created in a definite order; light interacts with each surface
once and only once, and after interacting with a surface ZEMAX will propagate the light
until it strikes the next listed surface. Any surfaces between the two are ignored in the
propagation. In non-sequential mode, light can interact with any surface any number of
times, in any order. ZEMAX launches beams from specified light sources, which are then
propagated until they either diverge (in which case they are dropped) or they strike a
surface. Upon striking a surface the light is either refracted or reflected according to the
rules of geometrical optics.

ZEMAX uses both ray tracing and physical optics propagation, although physical optics
propagation can only be used in the sequential mode. Since diffraction effects can only be
calculated using physical optics, the vast majority of the analysis was done in sequential
mode. Light pipes were modelled in non-sequential mode, as the light can strike a single
surface multiple times. While this doesn’t allow for the calculation of any diffraction effects,
such losses are so small as to be negligible in light pipes.

Beamlines modelled in ZEMAX were tested for a variety of wavenumbers, ranging from
5cm−1 to 120cm−1 in increments of 5cm−1.
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IV. JFEL BEAMLINE

The current beamline at JFEL is shown in Fig. 1. Synchrotron radiation is emitted by an
electron bunch approximately 3mm horizontal by 2mm vertical in size. The light is about
60% vertically polarized, the rest horizontally polarized. The source emits the radiation into
a subtended angle of about 200 milliradians horizontal by 135 milliradians vertical.

FIG. 1: The current design of the JFEL beamline.

After being emitted, the light is reflected off of four mirrors, three ellipsoidal and one
planar. All of the mirrors are made of polished aluminum and about 150mm in diameter.
There are two intermediate focal points before the final focus at the detector. A diamond
window 20mm in diameter is located at F1, separating the 1 × 10−9 Torr vacuum in the
accelerator from the 100 millitorr vacuum in the beamline.

Several variants of the current JFEL beamline were also tested. Most of the designs
tested had the same physical configuration as the current beamline, using four mirrors
of the same size in the same locations as in the present design. Among the variations
tested were beamlines with three intermediate focal points, beamlines using parabolic and
planar mirrors to send a collimated beam through the beamline until the final focus, as well
beamlines implementing a combination of both ellipsoidal and parabolic mirrors allowing
for both focused and collimated stretches. The possibility of using beamlines with only two
mirrors was also considered. These designs were based upon an entirely different physical
layout than the current design. Only two such designs like this were tested, one using a
collimated beam and the other using a focused beam.

Ellipsoidal mirrors are used to create beamlines with multiple intermediate focal points.
Much like an ellipse, all light emitted from one focal point of an ellipsoid is focused at
the other focal point. There are a few advantages to using ellipsoidal mirrors and several
intermediate focal points. Focal points are very convenient if a change in pressure is desired,
as a window placed at the focal point need not be as big as it would have to be if placed
elsewhere along the beamline. The biggest disadvantage of using ellipsoidal mirrors is their
lack of versatility. The only way these mirrors can be reused should the beamline be modified
in the future is if there is a need for a mirror with the exact same focal lengths.

A parabolic mirror will take all the light emitting from its focal point and collimate it.
Conversely, it will take all light from an incident beam of parallel light and focus it at the
focal point. As a beam, once collimated, will stay that way (for our purposes), it doesn’t
matter at what distance the next mirror is placed. This allows for much greater versatility
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than ellipsoidal mirrors. It is far easier to reuse a parabolic mirror than an ellipsoidal mirror
should the need arise.

V. BEAMLINE RESULTS

After calculating the diffraction losses and variance with position of each four-mirror
design in ZEMAX, it was found that all of the designs tested performed very well in both
minimizing diffraction losses and maintaining uniform diffraction losses. The average trans-
mission and variance in transmission with position for each beamline tested are shown in
Table I.

TABLE I: Transmission and variance with position of tested beamlines

Beamline Transmission Variance

Current JFEL Beamline .999294 3.25×10−4

Collimated Beamline .991440 6.32×10−4

Three-Focus Beamline .999322 9.29×10−5

PC2 .991148 7.58×10−4

PC3 .999021 6.55×10−5

PC4 .999330 3.14×10−4

TM Focused .999275 3.08×10−4

TM Collimated .999139 6.55×10−4

As can be seen, the current beamline performs very well; on average less than 0.1%
of the total energy is lost to diffraction with an average variation with position less than
.05%. Compared to the current beamline, only the three-focus design and PC4 performed
better in both categories. PC3 had slightly lower transmission and more uniform losses.
Both PC2 and the collimated design performed worse in both categories. As both of these
designs had a collimated beam in between M1 and M2, the window at F1 blocks some of the
incident radiation, especially at higher wavelengths where on order of 10% of the energy was
sometimes lost. This accounts for these two designs having significantly lower transmission
then the designs with a focus at F1. The transmission at each wavenumber tested for the
four-mirror designs are seen in Fig. 2.

It is important to note that the two-mirror beamlines can not be directly compared to the
four-mirror designs. As the two-mirror designs use an entirely different physical layout than
that of the four-mirror designs, the two-mirror designs are advantaged in their analysis in
that they do not have the window at F1 possibly absorbing radiation. While any two-mirror
design that was actually constructed would most certainly use a window somewhere, the
window could be put in any number of places. For this reason the two-mirror beamlines
were tested in the absence of any window.

That said, the two-mirror beamlines can be compared against the four-mirror beamlines,
so long as it is remembered that any comparison is slightly flawed. It was found that the two-
mirror designs performed on par with the four-mirror designs. The focused design was found
to perform better than the collimated design in both minimizing losses due to diffraction
and maintaining uniform losses. Compared to the current beamline, the focused design was
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FIG. 2: Fraction of energy lost due to diffraction for four-mirror beamlines

found to have a slightly lower average transmission, but slightly more uniform losses. The
transmission at each wavelength for both of the two-mirror beamlines are shown in Fig. 3.

FIG. 3: Fraction of energy lost due to diffraction for two-mirror beamlines
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VI. LIGHT PIPE RESULTS

In addition to beamlines, light pipes were also considered. A light pipe is a metal tube
that uses reflection to transport light from one place to another. A light pipe has several
potential advantages over a beamline. Light pipes are much smaller than beamlines, so they
take up less laboratory space. Light pipes are also much less expensive than a beamline.
Whereas a beamline can run anywhere from $10,000 to $100,000, a light pipe can be used
for less than $1,000. The combination of size and price allows using multiple light pipes at
successive locations along the accelerator to monitor the evolution of the bunch shape. As
for disadvantages, the first is that the transmission of a light pipe is not as high as that of a
beamline. Secondly, the frequency ranges that can be transmitted by a light pipe are much
smaller than that of a beamline.

Creating a light pipe in ZEMAX required defining a coating by specifying the real and
complex indices of refraction at the needed wavelengths. These were calculated for brass
using the Drude model of metals. In the Drude model, the dielectric function of a metal,
ε(ω), is defined by

ε(ω) = 1 −
ω2
pl

ω(ω + iΓ)
, (16)

where ωpl is the plasma frequency defined by

ω2
pl =

4πnee
2

me
. (17)

In the above ne is the carrier density, and me and e are the mass and charge of an electron,
respectively. In the dielectric function Γ = 1/τ , where τ is the relaxation time,

τ =
me

ρnee2
, (18)

and ρ is the electrical resistivity. From here η can be found, where η = n + ik, by noting
that

ε(ω) = η2, (19)

and so
εr(ω) = n2 − k2, (20)

and
εi(ω) = 2nk. (21)

The values from [2] were used for ne and ρ. The calculated values for n and k are shown
in Fig. 4

Three different light pipe designs were considered, all of the same length. The first was in
the same shape as the current beamline at JFEL. The second followed the shape of the two
mirror beamlines, and the third was a simple straight pipe to help see the effects of elbows
on transmission. All of the light pipes had a radius of 25mm, and they all began 300mm
from the source of the light. The electron bunch was modelled using a point source emitting
into a cone with a half angle of 1.5◦.

To analyze a light pipe, a detector was placed at the end of the light pipe and rays were
randomly launched from the source into a cone, which were then propagated through the
light pipe until they reached the detector and were absorbed, or dropped below a certain
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FIG. 4: Real and imaginary parts of the index of refraction as calculated by the Drude model

energy and were discarded. At each interaction ZEMAX calculated the amount of energy
reflected back into the light pipe and the amount which propagated out using the values
specified in the coating file. The total energy that reaches the detector was recorded, which
was then divided by the initial energy to find the transmission.

FIG. 5: Fraction of energy transmitted by light pipes

As expected, it was found that light pipes in general offer much lower transmission than
do beamlines. Whereas beamlines had transmission rates well above 90%, light pipes, even
at low wavenumbers where they performed best, never broke 75%. On average their trans-
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mission was much closer to 50% of the total energy. Fig. 5 shows the transmission of the
three light pipes at the tested wavenumbers. It can also be seen that the number of elbows
very clearly affects the amount of energy transmitted, with the straight pipe giving the
highest transmission, and the four-elbow pipe offering the lowest.

VII. CONCLUSIONS

From the results obtained it can be concluded that in terms of sheer transmission and
minimal variance, beamlines have performance much better than light pipes. Among the
beamlines, it was found that the Three-Focus design and PC4 both performed better than
the current design; given unlimited resources would probably represent the ideal choices.
When the fact that a lab does not have unlimited resources is considered, the choice is much
less obvious. While offering the better performance than the current design, the price tag
would also be larger, as the current design uses three aspheric and one planar mirror, and
these both use four aspheric mirrors. In most situations, it would probably be best to use a
two-mirror beamline if possible, given the significantly reduced cost.

While light pipes offered much lower performance than beamlines, the possible benefits
of using multiple light pipes and the reduced cost still make them a viable option for labs
to use. When deciding whether to use a beamline or a light pipe, the lab will have to decide
what level of performance is necessary for what they need and how much they’re willing to
spend.
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