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The shape of the end cells of the RF superconducting cavities was optimized

by numerical calculations in order to maximize the acceleration. A study has also

been done to investigate the acceleration in the end cells with geometry that would

possibly extract higher order modes.

I. INTRODUCTION

The work on increasing the accelerating gradient Eacc in RF superconducting niobium res-
onators has not terminated. An accelerating gradient of 46 MV/m (CW) has been achieved

at Cornell in 2004 [1]1. Here, Eacc is defined as Eacc =

∫ L

0
E dx

L
, which is the average electric

field in a cell with length L, where Ez(z)cos(ωt) = Ez(z)cos(2πz
λ

) has taken into account the
change of the field in time. One of the possibilities to increase Eacc is the optimization of
the cavity shape [2].

The limit of the accelerating gradient is imposed by
Hpk

Eacc
, a ratio that is fixed by geometry,

because Hpk is bounded above by the critical magnetic field Hcrit,RF , above which super-

conductivity breaks down [1, 3].
Epk

Eacc
may also impose a limit because Epk being too high

would cause the danger of field emission [3]. However, since the limit of Epk can be raised
by better cleanliness and high power processing while Hpk is a hard limit, it is justifiable to
reduce Hpk by sacrificing Epk up to a certain bound.

Previous optimization has been done for the inner cells in SRF cavities to reduce
Hpk

Eacc

for given values of
Epk

Eacc
[2, 4]. However, there is yet to be a systematic description of the

optimization of the end cells in SRF cavities.
Unlike the optimization of the inner cells, it is more reasonable to consider maximizing

Vacc with the optimization of the end cells. This is because the electric field, in theory,
extends to infinity in the tube (but with converging integral) and the definition of Eacc

becomes dependent on the tube length. The physically significant figure is the value of
acceleration Vacc =

∫ +∞
0 E dx , and this is the value that we will maximize.

In order to evaluate the improvement by the optimization, we compare the ratios
Hpk

Vacc
and

Epk

Vacc
with that of TESLA. For inner TESLA cells,

Epk

Eacc
= 2.0 and

Hpk

Eacc
= 42 Oe/(MV/m) [5].

We thus define e =
EpkL

2Vacc
and h =

HpkL

42Vacc
with L = 57.6524 mm (a quarter of wavelength, λ

4
,

for frequency of 1300 Hz) being the length of the inner cell so that comparison can be made
between inner and end cells. For TESLA cells, e = h = 1. Since we can make sacrifice for
e, the optimization of the inner cells has been previously done by letting e = e0 = 1.2 and
reducing h. Suppose the minimal h achieved for the inner cells was h0, which is different
for different Rbp. (For Rbp = 35 mm, for example, h0 = 0.8996, i.e., 10% less than the case
of TESLA.) We would then like to minimize max{ e

1.2
, h

h0

} for the end cells. The minima

1 Recents tests (July, 2005) of another reentrant Cornell cavity at KEK (Japan) confirmed this experiment

with the result of 47 MV/m (K. Saito, private communication).
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must be obtained such that Epk and Hpk are attained at the inner end. In this case, we
expect the fields in the inner half of the end cell to be identical to that in the inner cells and
max{ e

1.2
, h

h0

} = e
1.2

= h
h0

.
A previous study has shown that smaller iris radii would further increase the accelerating

gradient [6]. This is therefore an incentive for studying the effect of different iris radii on the
fields in the end cells. We also studied the possibility of different beam pipe radii because
broader beam pipe can help to extract higher order modes.

II. THE CODE FOR OPTIMIZATION

The SLANS code [7] is used for this study. It is a code designed for numerical calculations
of the fields in the monopole modes of axisymmetric cavities. It uses a finite element method
of calculation with a mesh of quadrilateral biquadratic elements [8]. In a study comparing
different codes for calculating the fields in a spherical cavity, SLANS was shown to have
better performance [9].

For the optimization of the end cells, a special envelop code TeslaGeom end was written
by Dmitry Myakishev, the author of SLANS. This envelop code automates the tuning the
frequency of a cell by changing its length. It also makes it possible to calculate a batch
of cells with different parameters: half-axis A, B and a (Fig. 1). Another version of this
envelop code (TeslaGeom) was used earlier for the optimization of the inner cells [6].

III. THE GEOMETRY FOR OPTIMIZATION

For this optimization, we employ the same construction of the profile line as that of the
inner cells [4]. This is constructed as two elliptic arcs (Fig. 1). It has been shown that
this shape achieves a better accelerating gradient than that of the ”circular arc - straight
segment - elliptic arc” profile line as in TESLA [2].

We only optimize the outer half of the end cell because for the other half we chose a
geometry identical to that of the inner cells, which has already been optimized. For the
geometry in Fig. 1, we have three independent variables to optimize, namely, A, B and
a. The other axis of the ellipse, b, is fixed by geometry since the two ellipses must have a
common tangent at the contact point. Req is fixed by the optimization of the inner cell. L

is chosen by tuning to the correct frequency. (This is different from the optimization of the
inner cells where L was fixed to be λ

4
and the frequency is tuned by changing Req.) The

frequency that is used is 1300 MHz, but the optimization is valid for any frequency: one
needs only to scale all the dimensions.

IV. LENGTH OF THE BEAM PIPE

The integration Vacc =
∫ +∞
0 E dx as described above can be approximated by numerical

calculations with an appropriate choice of the upper integration limit. It has to be a suf-
ficiently large yet finite number so that the error is sufficiently small. It is also important
that the integration limit is not too large for otherwise error will arise from the large mesh
size.

We aim at an accuracy of four decimal places in e and h. Since e and h varies from 0.8
to 1.3, they can be taken, for simplicity, to be 1 and thus the absolute error can be taken as
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FIG. 1: Geometry for Calculation

the relative error. This, in turn, by the formula of e and h, is given by the relative error of
Vacc, i.e., ∆Vacc

Vacc
.

The electric field of the fundamental mode in the beam pipe follows an exponential decay

e−αz, where α =
2π
√

f2
c −f2

c
, with fc, f and c being the cutoff frequency, frequency of the

wave and the speed of light respectively. The calculation of fc is described in the section of
Higher Order Modes. Supposing the cavity extends from 0 to Lc and the pipe extends from
Lc to Lc + Lt (Fig. 2), then the relative error of Vacc is given by

∆Vacc

Vacc

=

∫ +∞
Lc

E dz
∫ +∞
0 E dz

∫ +∞
Lc+Lt

E dz
∫ +∞
Lc

E dz
≈

∫ Lc+Lt

Lc
E dz

∫ Lc+Lt

0 E dz
e−αLt. (1)

FIG. 2: The Dimensions of End Cells with Ra = Rbp



4

To carry out the approximation, we use the case of Rbp = 35 mm. The first fraction is
calculated numerically to be 0.054. Previous calculations were done with Lt = 3Rbp. With
this choice, the relative error was 5 × 10−4. In order to reduce the error, we increased L to
4Rbp and the relative error became 10−4. Therefore, the error in e and h was also 10−4, as
desired.

V. RESULTS

The optimization, with the method mentioned above, has been done for end cells with
Ra = Rbp = 30 mm, 32.5 mm, 35 mm (Fig. 2). The optimized geometric parameters of the
outer half of the end cells are presented in Table 1. As mentioned above, the parameters
of the inner half of the end cells are taken as that of the optimized inner cells. In Table 1,
the accelerating voltages of the optimized end cells are compared to that of the optimized
inner cells. It is shown that the end cells, after optimization, have larger acceleration than
the inner cells. The difference is more significant for smaller Rbp (Fig. 3).

TABLE I: Dimensions (in mm) of the optimized end cells and comparison of V in end cells and

inner cells

Rbp A B a b Req Le
Vend

Vinner

30.0 55.56 43.13 4.11 7.25 97.374 56.411 1.0063

32.5 54.95 42.91 4.30 7.48 98.000 56.712 1.0054

35.0 53.53 42.79 4.59 7.75 98.710 56.240 1.0041

FIG. 3: The dependence of Vend

Vinner
on Rbp

In general, after the optimization, the ”corner” between the end cell and the beam pipe
becomes sharper. After the optimization, Epk is attained at both ends of the end cells, i.e.,
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the two local peaks are equal. Fig. 4 illustrates this by showing a comparison between the
electric field along the profile line before and after optimization for Rbp = 35 mm.

FIG. 4: Fields along profile line of the end cell before (left) and after (right) optimization

VI. RESULTS FOR SINGLE-CELL CAVITY

The optimized results for the ends cells can also be used to construct single-cell cavity
(Fig. 5) to carry out an experiment on the accelerating gradient. The goal is to construct
a single-cell cavity that has an accelerating gradient higher than that of the cavity which
achieved a world record accelerating gradient [1].

The optimized values of both the inner cells of multi-cell cavities and single-cell cavities
are presented in Table 2. The dimensions used for the single-cell cavity were the same as
that in Table 1. The fields in each cell are plotted (Fig. 6). It should be noted that the
fields in the end cells consist of two parts: for Rbp = 30 mm, 32.5 mm, 35 mm, the left parts
are identical to the left halves of the graphs (a), (c) and (e) respectively and the right parts
are identical to the right halves of the graphs (b), (d) and (f) respectively.

Table 3 shows the values of e and h for the single-cell cavity constructed with the geometric
parameters of the optimized end cells. It is expected that the single-cell cavity of Rbp = 30
mm, 32.5 mm, 35 mm would show improvements of 0.63%, 0.55% and 0.41% respectively
from the optimized end cells as in Table 1, i.e., improvements of 1.3%, 1.1% and 0.82%
respectively from the inner cells. This is because the improvement obtained by replacing an
inner half cell by an end half cell should be the same. This expectation is reached within
error.

VII. HIGHER ORDER MODES

It is another goal of the optimization of the shape of the end cell to extract higher order
modes (HOM) in the cavities. The HOMs include the dipole and quadrupole modes and they
both have a transverse component of electric field, which will distort the beam. These HOMs
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TABLE II: The dimensions (in mm) of multi-cell and single-cell cavities

Inner cells of Multi-cell Cavity Single-cell (using end half of end cells

Rbp A B a b L A B a b L Req

30 54.00 38.95 7.61 10.48 57.6524 55.56 43.13 4.11 7.25 56.411 97.374

32.5 52.84 37.53 8.29 11.24 57.6524 54.95 42.91 4.30 7.48 56.712 98.100

35 51.56 36.22 9.16 11.92 57.6524 53.53 42.79 4.59 7.75 56.240 98.710

FIG. 5: Shape of single-cell cavity

can be got rid of if the beam pipe radius (Rbp) is chosen appropriately so that the frequencies
of the HOMs are higher than the cutoff frequency of the beam pipe and consequently the
HOMs will propagate out of the cavities.

The cutoff frequencies of the TE11 mode in the beam pipe with various Rbp are shown

in Table 4. They are calculated by f =
t′
11

2πR
√

µ0ε0
, where t′11 = 1.84118 is the first root of

derivative of the Bessel function J1. The frequencies of the fundamental and higher order
modes in the cavity are shown in the dispersion curves (Fig. 7). The dispersion curves show
the phase dependence of the frequencies of each mode in an Rbp = 35 mm cavity. They are
found by calculating the eigenmodes inside a 9-cell cavity with the optimized cell, i.e., the
(different) optimized values of the parameters of the inner and end cells are used.

In Table 4, we also calculate the required Rbp(= 55.82 mm), above which the cutoff
frequency will be lower than the frequencies of the HOMs. It should be noted that even
so the problem of HOMs is not totally eliminated because some HOMs can transform so
that they are not propagated out of the tube. Moreover, by increasing Rbp we have to make
two sacrifices. First, the attenuation of the fundamental mode of the cavity will be slower.
Second, as we will show in the next section, the acceleration will be lower.

TABLE III: e and h values for the single-cell cavities

Rbp e h h0
e
e0

h
h0

vsingle

Vend

30 1.1869 0.8166 1.1999 0.8333 0.9892 0.9800 1.0110

32.5 1.1890 0.8477 1.2000 0.8656 0.9908 0.9793 1.0093

35 1.1900 0.8816 1.2000 0.8996 0.9917 0.9799 1.0084
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FIG. 6: Fields along the profile lines of inner cells of multi-cell cavities and single-cell cavities

FIG. 7: Dispersion curves for Rbp = 35 mm

VIII. OPTIMIZATION WITH LARGER BEAM PIPE RADIUS

In order to reduce HOMs, we attempt to optimize two geometries with larger Rbp. The
first geometry is shown in Fig. 8. Rbp is changed to be different from Ra and we investigate
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TABLE IV: Cutoff frequencies of TE11 mode for different Rbp

Rbp /mm fcutoff /MHz

35 2509.973

40 2196.226

45 1952.201

50 1756.981

55 1597.256

55.82 1573.816

60 1464.151

its impact on Vacc.

FIG. 8: The shape with Ra < Rbp

The results for Ra = 30 mm and Ra = 35 mm are shown in Fig. 9. It is shown that as
we increase Rbp to combat HOMs, we sacrifice Vacc. This trade-off is more significant for
Ra = 30 mm, where Vend

Vinner
decreases more rapidly. In fact, for the Rbp = 30 mm case, it is

impossible for Epk and Hpk to be attained at the inner half of the end cell.

FIG. 9: Vend

Vinner
for various Ra and Rbp (Units in mm)

Another geometry that has been optimized is shown in Fig. 10. It should be noted that
the half-cell of the inner cavity is shown for clarity but was not used in the geometry for
calculations. Ai, Bi and ai are chosen as the optimized values of the inner cells and Ae,
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Be and ae are to be optimized as above. Before the optimization, at, bt, and c are chosen
arbitrarily. Rbp was chosen to be larger than Rae so that the HOMs can be allowed to
propagate out without much sacrifice in Vacc. The same technique was used with the one-
cell KEK cavity and the two-cell cavity of the ERL injector that is under development at
Cornell University. We hope to generalize this technique to multi-cell cavities.

FIG. 10: Shape with different Rae and Rbp

We optimized the cavity with Rai = 35 mm. We set at = 9.28 mm, bt = 12 mm and c = 3
mm (and thus Rbp = 50 mm). This initial choice of at and bt is based on the curvature of
ellipse in the optimized inner cell. With this choice of at, bt and c, we obtained an optimized
value of Vend

Vinner
= 0.9875, which is nearly 8% better than the value obtained for the Rbp = 50

mm case for the above geometry.
The dependence of the optimization on at, bt and c is also studied. We vary these param-

eters while fixing other parameters as above, including the previously optimized parameters
Ae, Be and ae for the end cell. bt and c are studied together in order to keep Rbp constant.
It was shown that max{ e

1.2
, h

h0

} increases with increasing bt (Fig. 11).

FIG. 11: The dependence of max{ e
1.2

, h
h0
} on bt in mm
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In order to minimize e and h, we choose bt = 7 as we study at. at is varied from 4.53
mm to 60 mm and it is shown that max{ e

1.2
, h

h0

} decreases (Fig. 12), i.e., Vacc increases in
the end cell. The decrease levels off at at = 50 mm. We then optimize this geometry with
at = 50 mm, bt = 7 mm and c = 6 mm. For this geometry, Vend

Vinner
is optimized to be 1.0026,

a value that is larger than that of at = 9.28 mm but smaller than that in Table 1. It is
apparent that as a → +∞, this geometry tends to the one in Fig. 2 and Vend

Vinner
increases

asymptotically to 1.0041, the value in Table 1.

FIG. 12: The dependence of max{ e
1.2

, h
h0
} on at in mm

IX. CONCLUSION

The end cells can be optimized to obtain Vacc better than that of the inner cells. Although
this improvement is small (about 0.5%), this study nevertheless provides a systematic dis-
cussion of the possible improvement that can be given by the optimization of the shapes of
the end cells.

The possibility of combating Higher Order Modes by increasing the beam pipe radius is
also studied. The final shape has to depend on the trade-off between the reduction of Higher
Order Modes and the increase in accelerating gradient. This, in turn, will depend on further
study on Higher Order Modes as the beam pipe radius is increased.
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