

Introduction to Particle Accelerators & CESR-C

Michael Billing

June 7, 2006

What Are the Uses for Particle Accelerators?

- Medical Accelerators
 - Create isotopes tracers for Medical Diagnostics & Biological Studies Are sources for Cancer Therapy

Physics Principle:

Need few to 10's MeV Electrons or Protons for nuclear activation

- Synchrotron Light Sources
 - Source of intense Visible & Ultra-Violet Light and X-rays
 Used as a research tool for examining the atomic & molecular structure for
 Material Science e.g. fluorescence, matter at high pressures
 Molecular & Biological Science e.g. virus crystallography,
 function of tissue (e.g. tendons)

Physics Principle:

Use Synchrotron X-rays generated by bending Electrons on a curved path

$$E_{c} = \frac{3}{4 \pi} \frac{h c}{\rho} \left(\frac{E_{b}}{m c^{2}} \right)^{3}$$

- High Energy Physics
 - Sub-atomic particle physics
 - Standard model for Quarks and Leptons
 - Mechanisms functioning in the instant after the Big Bang

Physics Principle:

Need few GeV to 100's of GeV Electrons or 100's of GeV to 10 TeV Protons for Sub-atomic particle creation

$$E_b \ge \sum_f m_f c^2$$

Where Are Particle Accelerators in Physics Picture?

Branches of Physics

Astronomy & Astrophysics - Stars, Galaxies, Cosmos **Classical Physics** - Light, Heat, Motion, Electricity, Magnetism Low Temperature Physics - Superconductivity **Plasma Physics** - Discharge tubes, Fusion **Quantum Physics** - Lasers, LED's, Fiber Optics **Atomic & Solid State Physics** - Transistors, Material Science, Surface Physics **Relativistic Physics** - Stars, Cosmology, Particle Physics **Accelerator Physics** - Particle Accelerators, RF Devices, X-ray Sources **Nuclear Physics** - Nuclei, Fission, Radiation Therapy **High Energy Physics -** Elementary Particle Physics, Tomography, Catscans

Important Reminders

• Make Use of the Lorentz Force $\vec{F} = q [\vec{E} + \vec{v} \times \vec{B}]$

==> Acceleration Requires Charged Particles

Tools of the Trade: Particle Sources

Tools of the Trade: Particle Sources

• Positron Source

Electron Beam Incident on a Target Can Generate Positrons via Bremsstrahlung and Pair Production

Tools of the Trade: Particle Sources

• Proton Source

Use Electrons to Ionize a Hydrogen Gas Target

Pulse HV after the Electron Beam Passes

Tools of the Trade: Magnets

• Dipole $\vec{B} = B_0 \hat{y}$

Purpose: Bends Beam on "Circular" Path

Tools of the Trade: Magnets

►X

B Field

Beam

Ironyoke

• Quadrupole

 $\vec{B} = k y \hat{x} + k x \hat{y}$

- Linear Restoring
 - Force for x
 - Similarto a Spring

 $\vec{F} = q c k \left(- x \hat{x} + y \hat{y} \right)$

- Purpose – Focus/Defocus Beam (Lens)

Conductor

 Net Effect of Alternating Focus/Defocus Lenses is to Focus the Beam – "Principle of Strong Focusing" Tools of the Trade: Accelerator Structures

- "RF" Accelerator Structures
 - Use Radio Frequency Structures to Develop a Large Oscillating Electric Field -> Time-Varying Potential

$$V(t) = V_0 \cos \omega t$$

• Can Generate 10's MV/m Accelerating Electric Fields

Introduction to CESR-C

CESR-C Continued

• Transfer Line – takes beam from Synchrotron to CESR

•Final Focusing Quad

Focuses beams going into CLEO

Fast History of Accelerators

1895: Roentgen discovers x-rays with cathode ray

1919: Rutherford produces first nuclear reactions with natural alpha particles, ${}^{4}\text{He}$ ${}^{14}\text{N} + {}^{4}\text{He} \mapsto {}^{17}\text{O} + p$

Cyclotron

1932: Lawrence and Livingston use a cyclotron for 1.25MeV protons

Low Energy Accelerator Develops RF Voltage Between the Two DEEs

1939: Lawrence uses 60" cyclotron for
9 MeV protons,
19 MeV deuterons,
and 35MeV ⁴He.

First tests of tumor therapy with neutrons

THE LOMA LINDA PROTON THERAPY FACILITY

 LINear ACcelerator Single Pass Accelerator

Highest Energy (Electron) LINAC is SLAC LINAC => 50+ GeV Beam Energy

1928: Wideroe builds the first drift tube linear accelerator for Na⁺ and K⁺

Examples of Simple Accelerators

• Circular Accelerator, e.g. Synchrotron

Multi-turn Accelerator – Energy Ramps Up Multiple Passes through

Same RF Cavities

Particle bender (magnet) Particle pusher (RF cavity)

1945: Veksler (UDSSR) and McMillan (USA) invent the synchrotron1946: Goward and Barnes build the first synchrotron1949: Wilson et al. at Cornell are first to store beam in a synchrotron

Storage Ring Footprint Same as Synchrotron, BUT

Ring Accelerator Maintains Constant Energy – "Stores the Beam" for Long Times

1961: First storage ring for electrons and positrons (AdA) in Frascati for 250MeV

1972: SPEAR electron-positron collider at 4 GeV. Discovery of the J/Psi at3.097 GeV by Richter (SPEAR) and Ting (AGS) starts the November revolution and was essential for the quark model and chromodynamics.

1979: 5GeV electron positron collider CESR at Cornell U. (designed for 8 GeV)

1987: Start of the super-conducting TEVATRON at FNAL

1989: Start of the 27 km long LEP electron-positron collider

1990: Start of the first asymmetric collider, electron (27.5 GeV) proton (920 GeV) in HERA at DESY

1998: Start of asymmetric two ring electron positron colliders KEK-B / PEP-II

Today: 27km, 7 TeV proton collider LHC being build at CERN

Synchrotron Light Sources

1947: First detection of synchrotron light at General Electric.

1952: First accurate measurement of synchrotron radiation power by Dale Corson with the Cornell 300MeV synchrotron.

1st Generation (1970s): Many HEP rings are parasitically used for X-ray production2nd Generation (1980s): Many dedicated X-ray sources (light sources)

3rd Generation (1990s): Several rings with dedicated radiation devices (wigglers and undulators)

Today (4th Generation): Construction of Free Electron Lasers (FELs) driven by LINACs

Large Hadron Collider – CERN

7 TeV Protons on 7 TeV Protons

26 km Ring of Superconducting Magnets

Soon to begin operation in Switzerland and France

Energy Recovery Linac

Compact Beam From Linac Accelerated in Superconducting RF cavities Beam goes once around the accelerator Then is Decelerated in RF Cavities – Returning Energy back to the Cavities Produces a very compact X-ray source

SASE FEL: Self Amplified Spontaneous Emission Free Electron Laser

Undulator

Causes bunch to wiggler back-and-forth quickly

Synchrotron photons given off in the undulation react back on the electrons and modulate the distribution of particles -> makes more photons
Then pass these through a second undulator to amplify the modulation of the bunch Makes a very intense source of light of 1 – 100 nm wavelengths

Linear Electron Positron Collider

33 Km Long

350 GeV Electron-Positron Collider

One Possibility is TESLA:

Two Linacs Pointed at each other

Two Damping rings to compress the transverse beam sizes

Uses Superconducting RF Accelerator Structures

References

"Principles of Charged Particle Acceleration", S Humphreys, <u>http://www.fieldp.com/cpa/cpa.html</u>
"Accelerators Around the World", <u>http://www-elsa.physik.uni-bonn.de/Informationen/accelerator_list.html</u>
"Accelerators and Beam Physics Group", CERN, <u>http://slap.web.cern.ch/slap/</u>

Special Thanks to

Georg Hoeffsteatter, Many excerpts from the first lecture in the undergraduate level course, Physics 456, "Introduction to Accelerator Physics and Technology"

Lora Hine, LEPP Education Outreach Coordinator

Reflection: Not All Accelerator Physics isPhysics Alone

Some is Art

44444

Artist:

Robert R Wilson, Cornell & FNAL