Looking at Quarks

C Introduction to Elementary Particles
C CLEO: Our eye on collisions
C What quarks tell us about nature



The Particles
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Mesons and Baryons

Quarks are never free.
Instead, we always see them either in baryons
or mesons

Baryvons ggg and Antibaryons qqgq Mesons qq

Baryons are fermionic hadrans. Mesons are bosonic hadrons.
There are about 120 types of banyons. Thers are about 140 typas of masons.
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The heavy baryons and mesons usually decay quickly into
the lighter ones: p, n, mand K



Detectors for Particle Physics




Today: CESR and CLEO
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Collisions

First, e and e- annihilate to make a pair of charm quarks:
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Then the charm quarks pull apart, pop some light
quarks,{?nd forr;l D mesﬂons:

3" a

D mesons decay after 1ps into particles that CLEO detects



What’s a D meson?

Hydrogen Atom

proton
L]

electron
cloud

Electromagnetism binds
electron to proton

D Meson

charm
quark
%
up-quark
cloud

Strong Force binds
up-quark to charm-quark

Decays via weak interaction:
charm — strange quark.

The lost mass materializes as new
particles (pions, kaons, etc)



Why D mesons?

Their decays teach us about

* Weak interactions
°* Fundamental parameters

* Strong interactions
* Binding of the daughter particles
Checks new calculations

Enables rigorous studies of matter-
antimatter asymmetry & searches for new
phenomena

* Charm quark bound states may decay into
exotic forms of matter known as glueballs



Detecting Particles

Run: 109794 Event 1+




What do we want from our detector?

Imagine that a bomb explodes mid-air, and you
want to study the fragments to find out
everything you can about the bomb.

What properties of the fragments would you
want to measure?

Direction of motion of each fragment just after
explosion

Speed (or momentum) of each fragment
Mass of each fragment



CLEO-c Detector
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Tracking Chambers
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Tracking Chamber Operation

Particle
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Collision
Point

End View of Chamber

X - wire at 0V (field wire)
o - wire at 2000V (sense wire)

1.

Particle ionizes the gas
that fills the chamber.

Each released electron
travels to nearest sense
wire.

We measure arrival time of
the electrons -- precision
of 1/10 mm




The Magnetic Field

O
e

CLEO I

Superconducting coil
surrounds the tracking
chambers and produces a
1 Tesla magnetic field.

As a result, charged
particles follow curved
paths.

*The direction of curvature
reveals the sign of their
electric charge.

*The amount of curvature
varies inversely with
momentum.



Our “Event”

Run: 108784 Event; 1

Notice

* the paths of the
charged
particles in the
chambers

* their curvature

Which particle has the
highest momentum?
The lowest?



Distinguishing pions from kaons

The opening angle of the Cerenkov radiation gives the
particle speed. Then momentum/speed reveals the mass.

Cerenkov Radiation - Blue light
produced when a fast particle goes

1 !,f" through material, analagous to a
?(*\,; sonic boom. The direction of the light
¢ W" depends on particle speed.
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Incident Hadron



A particle in the RICH
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Next: Electromagnetic Calorimeter
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Electromagnetic Calorimeter

Csl crystal
CLEO has 7800
like this one.

Csl nucleus

Light output is
proportional to
incident electron or
photon energy

Incident electron
or photon



Electromagnetic Calorimeter

Simulation of an
electron showering
in the calorimeter

Pink - electron
Blue - photon




Particle Detectors
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| Muon Detection

J/&" Muon steel
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solenoid return
yoke



What has CLEO measured so far?

Direction of motion of charged particles --
Momentum magnitude of charged particles --

Speed of charged particles --
(together with momentum gives mass)

Energy of photons --

Muon ID --

All detectors for particle physics look more or
less like this one.

A thought question: in general, the higher the energy of
the accelerator, the bigger the detector. Why is this?



The Upshot

°* You now know the tricks of the trade that have
led to most of our knowledge about how the
quarks and leptons interact with one another.

e So what have we learned?
Where does particle physics go from here?



The Forces

)

Classical view: “B accelerates because it feels A’s electric field”
Quantum view: “B accelerates because it absorbs a photon
produced by A”

Photon (y) - the carrier of the
b . 0 electro-magnetic force.

Gluon (g) - the carrier of the strong
force. Binds quarks e.g. in protons
and neutrons.

) W and Z - the weak force carriers.

Graviton - not observed, but
postulated to exist for gravity.



Feynman Diagrams
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At CLEO:

* Look for new physics by looking
for decays that are forbidden in
the Standard Model

* Understand the Standard Model
better so that we can recognize
deviations that signal new physics

* Measure the fundamental parameters
of the weak interaction

* Understand strong interactions



Quark interactions

* This plot checks that the Standard Model
describes disparate, complex weak
interaction processes. So far, it does.
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But it’s Incomplete

Unanswered questions:
* How did the antimatter disappear?
* What is the dark matter?
* How does gravity fit in?

* What’s the sludge (aka Higgs particle)?
We need a sludge-filled Universe to
give the W and Z their masses.

Unsatisfying situations:
* The forces don’t “unify”

* |f you calculate the Higgs mass, you get
the wrong answer



Unification
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Strength of Force

Supersymmetry?

Forces Merge at High Energies
S S B T

With Supersymmetry,
all forces have

the same strength

at high energies
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The Big Bang




The Future

* Large Hadon Collider (LHC) will collide p and p
starting in 2007. ATLAS and CMS experiments at the

LHC may see Higgs-like particles and new, weird

phenomena.




The Future

* |nternational Linear Collider (ILC) wili &
collide e and anti-e starting in ~2015. A
Will explore the phenomena seen at i
the LHC. Does the Higgs travel alone

or with partners? Is one of the cl

discovered particles dark matter? A

sign of extra dimensions of space?
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Conclusion

At LEPP

* We are addressing some of the great
mysteries of the particle world and the
Universe.

* Our particle detectors and software push
the envelope of precision and scope.

°* Our accelerators press the frontier in the
development of particle sources,
accelerating structures and the control of
dense beams.

Welcome to this enterprise.





