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An Introduction to

Superconducting Radio-Frequency (SRF)
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SRF Cavities

* Use EM fields (RF-fields) in
cavities for acceleration.

 Lowest frequency eigen-
mode has a longitudinal
electric field = use this mode | Beam tube
for acceleration G

+ Typical RF frequency: 0.5
GHz to 1.5 GHz _*%mmm s )-—)- Electric field
+ Higher-Order (higher
frequency) modes: unwanted

] Magnetic fi c:]d"""«..\\_‘{/z";
9 ne C d d amplng . Equator
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SRF Cavities at Cornell: CESR

0050399001

| CESR
Example: CESR ~._ Storage Ring
Synchrotron
. 5 + s
Challenge 1s to store high currents B et Ths THRASGE LR

stably (ampere) rather than achieve
Very hlgh energy : Positron Intensity

Superconducting

RF Cavities |yeraction Region
Upgrade
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Example: ILC ~33 km

X-ray FEL laboratory

Challenge is to reach
very high energy

while maintaining ELECTRON fnec
good beam quality! experimentahall

and detector for
particle physics

cryogenic hall

>20,000 cavities! POSITRON lingc

500 GeV cm
energy
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A Science makes Science

SRF for high-energy-physics:
_ TRISTAN, HERA, CESR, LEP, SPS, KEK-B

SRF for nuclear science:

— CEBAF, ATLAS, SBSL, Florida State U., PIAVE, JAERI, New

Delhi, CEN Saclay, Australian National U., U. Of Washington, ...

SRF for neutron sources:

— SNS

SRF for Free-Electron-Lasers:
— DESY VUV-FEL, T]ANF IR-FEL, ELBE, ...

SRF for storage ring light sources:
— CHESS, Diamond, Canadian LS, Taiwan LS
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From a Cavity to a whole SRF Cryomodule:
The SRF Booster Module for the ERL

Cryogenic system
= Bring cavity to 2K

#

Frequency tuner@y
= Adjust cavity

frequency HO <M\
= Damp Higher-
Order Modes
Input Coupler
= Couple RF I8
power into cavity RF cavity

Inside He vessel
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Wall losses:

Surface currents (< H)
result in dissipation
proportional to the
surface resistance (R)):




Accelerating Mode:

* Superconductor = very
small RF losses

* Q,: includes RF wall losses
only

= Very high quality factor Q,
= Typical: Q,= 10!
5 V=20MV = P =15W

= Normal-conducting: Q,= 10*
> P_=15MW
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Why SRF and not normal-conducting RF?

Advantages of superconducting RF cavities:
* Much lIower wall losses (6 orders of magnitude)!
= Lower operating costs.

= Can operate at a higher voltage in cw operation or long
pulse operation. = Fewer cavities means less beam
distortion.

= Freedom to tailor cavity design to specific accelerator
requirements (Power dissipation is not the primary
concern!) = Better beam quality. Higher beam
currents.

= Example: Beam current in CESR more than doubled by
replacing all copper cavities with superconducting cavities.!
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3 Superconducting vs. Normal Conducting Cavity

3

e one cell from NLC e TESLA

e normal conducting cavity e superconducting cavity
* copper e niobium

 11.4 GHz * 1.3 GHz

e water cooled e 2 K (LHe)

Fundamental differences due to difference in wall losses.
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RF Superconductivity (1)

* RF resistance small but finite Compare with Cu: R _~ 10 mQ
because Cooper pairs have inertia.
= nc electrons “see” an electric field!

* BCS theory: Frequency and A(0)/ k,T.=1.89
temperature dependence of surface
resistance at low RF fields (7: S.c.
transition temperature)

2 _(—const*T,IT)
Ryes < [re

More resistance the More resistance
more the electrons are || the more
Jiggled around. nc electrons are
excited.
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RF Superconductivity (I1)

 Critical magnetic RF field
limits maximum achievable

field in a SRF cavity. Type Il Superconductor
e But: What is the critical RF A-lM  H_,

field?
* Niobium: Weak type II

superconductor

* Measured: Meissner state
can persist meta-stably
above H_, in RF fields H,, H, He,
(superheating field H_,) — ~ N

Meissner State Vortex State = Normal State

Applied B-
» field

* But: How far above H , is
the open question! Theory??

Matthias Liepe June 12, 2006 16



\'\,U ]
et W

D
<~<TH A &
(&) th
i v
(o))
) =

6D h

Ideal and Real Cavity Behavior

Q

1
10

Ideal Quench

10

: |

9 Theoretical Limit
10 Fundamental RF

critical magnetic
Copper CW cavities field

s i |
10 25 50 MV /m
Accelerating Field (H = 1800 Oe)
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The Real World...
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 Work horse of cavity
studies 1s the vertical
test arrangement.

* Measure @, (wall
losses) v. E,

CC

* It permits rapid
turnaround for tests.
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e Cover cavity exterior with special thermometers to
detect heat dissipated by defects

| AN N

Omk h 120 mk
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Microscopy

e Use an SEM and Auger Analysis to
examine the cavity interior.
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Evolution of SRF Cavity Field Gradients

| | | | '
i i i i
1975 1985 1990 1995 2005
3 MV/m 6 MV/m 15 MV/m 25 MV/m >40 MV/m

Lo Electron  Thermal  —oolO™  High field G-
miation: multiplication breakdown . reduction
emission
Electropolishing,
. Improved High- High-pressure high and low
Solution: : : L
cavity shape purity Nb rinsing temperature

baking, ...

= Cornell has been prominent in overcoming all these limitations
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Problem 1: Multipacting (1970s)

* MP is due to an exponential increase of electrons
under certain resonance conditions:

1st Order 2nd Order 3rd Order

T

NANAS AAAS

* Not all potential
barriers
are active because
electron multiplication

nly ® Wet Treatment
- u o 300° C Bakeout
A Ar Discharge Cleaned

has to exceed unity.

Secondary Emission Coefficient
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Multipacting: Solution

* In cavities, solved multipacting by adopting a
elliptical cell shape:

Equator

B e e e o e,

350-MHz LEP-II cavity (CERN)

Electrons drift to equator, where electric filed is = (.
= MP electrons don’t gain energy.
= MP stops.

Matthias Liepe June 12, 2006 26



o
et W

Problem 2:Thermal Breakdown (1980s)

* Thermal breakdown (quench) is usually
triggered by a normal conducting defect, when
it heats the Nb above the critical temperature.

Defect, radius ry4
0.1 - 1 mm size

0~
i _L particles can cause

Pl 1B!

Niobium

Helium bath }
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Thermal Breakdown: Solutions

* Avoid defects:
= Clean niobium and cavity production.

= Clean assembly.

e Tolerate unavoidable defects but
“neutralize” them by thermally
stabilizing them.

= Improve the thermal conductivity of
niobium.

= Improve purity of the niobium.
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Problem 3: Field Emission (1990s)

<
&
°m [

* Emission of e from cavity surface in high E-fields.

* All emission is associated with (conducting)
microscopic particles.

* Acceleration of electrons drains cavity energy.

* Impacting electrons produce heating of the surface.

\‘. -1.,,,.'[.’r

Mlcron size partlcles cause FE. "'n"“r

Matthias Liepe June 12, 2006
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Field Emission: Solutions (I)

« Buffered Chemical Polishing (BCP):

» Etching removes

damaged surface

* High Pressure Water Rinsing (HPR):

» Rinsing of cavities
with up to 1000 psi
ultra-pure water
jets removes many
particles.
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« Clean Room Technology:

» All cavities and vacuum
components are cleaned
and assembled in clean
rooms.

* High-Power Processing:

> In some cases applying of high
power can cause the destruction
of field emitters and improve the
cavity performance.

= Reduction of field emission after
the cavity is installed in the
accelerator

Matthias Liepe June 12, 2006
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Problem 4: High Field Q-Reduction (>1995)

* High field Q-slope without field-emission!
* Effect not 100% clear yet...

® ACSS

+ ACS6

m ACS7

A ACSY

ooooo o D% ﬂ % 5 ACH0
@E&I F O o ACE
m] @ ® ACH]

AL B Eﬁ‘ﬂﬁi-&-l.an.m; 2 % ’

m 8 ‘ Ay : o ACE2
= AQ (8¢ ey

Fo ; s
. ‘Ej - o ACGH3

ng h f leld Q dl’ Op / = .3‘ @ A ACHS
= anomalous losses

15
| |- [MV/m]
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Electropolishing of 1-cell cavities

(Schemis) EP electrolyte

90 O/D H2804
10 % HF
30 °C

0,5 um/min removal of
material

Standard Etch Electropolishing

* Low temperature (110 C) “in-situ” baking

Matthias Liepe June 12, 2006
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We know how to make good Nb cavities, but we don’t
understand well why it works...

Recovered by low

Low field Q-dro
e Medium field Q-drop E temg{. (1;0 kC_:) in-
situ” baking

Sharp drop of
the quality
factor at B =100
mT

109 I I I \

0 10 20 30 40
E ... [MV/m]
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How to get high fields? A Recipe
HJIJthj T I@alkge Chemicall Etching

SJt&almjmun@ Ebeam Welding

11 @C’ l:))alkge;x Meoeunting, in

Olje an Rﬁ@@mj
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Cavity production by Cornell, cavity treatment and test by KEK.
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Basic SRF Cavity Research after 30+years:
What’s left?

e After overcoming many limitations (normal-
conducting inclusions, field emission, ...), we

finally can study the basic superconducting RF
behavior of niobium!

* Two mayor open physics questions in SRF:

= Why does the RF surface resistance increase
strongly at high RF fields?

= What is the RF critical magnetic field?

= How and when does flux penetrate at high RF field?
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SRF for future Machines around the World
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Proton Driver

8 GEV, 336 s.c.
cavities

Cornell ERL

5 GeV, 409
s.c. cavities

BNL ERL
Electron
Cooler

CEBAF Upgrade

Matthias Liepe

Planed SRF Driven Accelerators

International Linear Collider XFEL
500 GeV, 16000 s.c. cavities 20 GEV, 800 s.c.
. — cavities BESSY FEL
TN anes A
S e T R %3 GEV, 144
-aﬁ“‘;ﬁ_ Yl -/f_;_“'-’jf" .S.c. cavities
. ) | -’iﬁ%ﬁj.u — jﬁ;
s " o ; LHC, CERN
o i=%:-.-.:. - =
Q s | \'51_/_,3? “\{ggx P CERN SPL
. I ‘-:__,.’.'d'[.:_lﬁ = .
. ? \-5 & B ‘f:ﬁk& *. i}
k 4 ] r'ﬁﬂ « 7
i ff l\l\'.., /I ) - \:I
P - ﬁqh{‘f d;?
" 4-GLS ERL
0.6 GeV, >30 s.c. KEK ERL
cavities

Light Source

Shanghai Light Source
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History of SRF for Accelerators (1)
From a nice technology ...

1965, Stanford U.: R&D on superconducting cavities starts
1968, Cornell: R&D on superconducting cavities starts

1975, Cornell Electron Synchrotron: First SRF cavity in a
high-energy-physics accelerator

1982, CESR: First test of a SRF cavity in a high-energy-
physics storage ring.

1990, Cornell: First TESLA (International Linear Collider,
ILC) workshop

1993, Cornell : First ILC multi-cell cavity passes 25 MV /m
(TESLA design gradient)

Matthias Liepe June 12, 2006
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... to the dominating choice of accelerating

Structure

1990 to present, Tristan, CESR, HERA, LEP, KEK-B; ...:
High-energy-physics accelerators use SRF

1994, CEBAF: Operation starts with 310 cavities. Cavity
design and R&D by Cornell

1999, CESR: First storage ring runs entirely on SRF cavities.

2000 to present: Storage ring light sources are using the CESR
SRF cryostat design (Taiwan, Canada, England, China)

2004: International Technology Recommendation Panel
recommends cold SRF technology for International Linear

Collider (ILC)

2005: First cavity passes 50 MV /m (Cavity design and
production by Cornell)
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Radio-Frequency =
Fac 'Iuty

Suppori
Buildings:

3 4
* Central Laboratory
and Office Complex

Joint Institute for
Neatron Sciences

Dump
Inpector

High Luminosity

superconducting -
ELECTRON linac

experimental hall
and detector for
particle physics

cryogenic hall "
o———— 2100m — e —  1200m — 4

superconducting
POSITRON linac

"dog bone" damping ring
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Hot Topics and R&D at Cornell

QA

* Highest gradients in solid niobium cavities
* What is the RF critical field of superconductors?
* Low cryogenic losses at high fields

— Surface roughness, density of grain boundaries,
pollution at metal-oxide interface?

* Alternative materials for superconducting cavities
— Nb3Sn, high Tc superconductors,...
* Interaction between cavity and beam

— Excitation and damping of higher-order-modes, beam
focusing, emittance growth, THz radiation, ...

* Digital RF field control

Matthias Liepe June 12, 2006
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Superconductor at T>0, H>0
Nonlinear BCS Theory

(02 ’ A o 1 7 w
R(f) =2 exp| - g,(P)| A@)+———4 ’
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Vertex Penetration at Grain
Boundaries?

R(T.H)=R (ﬁT._H){l + €

- = n g +
= lH 0 /H b0 )‘_ _
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Flux Penetration at Grain
Boundaries

Surface Roughness Field Emission

5 um

Standard Etch
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Basic SRF research, SRF for CESR, Neutrino
factory/ u-Collider, ILC, Cornell ERL, ...
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