

Matthias Liepe

Cornell University

Matthias Liepe

- An Introduction to Superconducting Radio-Frequency (SRF)
- The Struggle for high Fields
- SRF for future Machines around the World
- SRF at Cornell
- SRF Tour

An Introduction to

Superconducting Radio-Frequency (SRF)

Matthias Liepe

- Material: Niobium, $T_c = 9.2K$
- Use EM fields (RF-fields) in cavities for acceleration.
- Lowest frequency eigenmode has a longitudinal electric field → use this mode for acceleration
- Typical RF frequency: 0.5 GHz to 1.5 GHz
- Higher-Order (higher frequency) modes: unwanted
 → need damping

SRF Cavities at Cornell

Matthias Liepe

SRF Cavities at Cornell: CESR

Example: CESR

Challenge is to store high currents stably (ampere) rather than achieve very high energy

Matthias Liepe

SRF Cavities: Engine for Accelerators

Example: ILC

Challenge is to reach very high energy while maintaining good beam quality!

>20,000 cavities!

A rapid Growth in SRF Application

Matthias Liepe

A Science makes Science

- SRF for high-energy-physics:
 - TRISTAN, HERA, CESR, LEP, SPS, KEK-B
- SRF for nuclear science:
 - CEBAF, ATLAS, SBSL, Florida State U., PIAVE, JAERI, New Delhi, CEN Saclay, Australian National U., U. Of Washington, ...
- SRF for neutron sources:
 - SNS
- SRF for Free-Electron-Lasers:
 - DESY VUV-FEL, TJANF IR-FEL, ELBE, ...
- SRF for storage ring light sources:
 - CHESS, Diamond, Canadian LS, Taiwan LS

From a Cavity to a whole SRF Cryomodule: The SRF Booster Module for the ERL

> Cryogenic system ⇒ Bring cavity to 2K

Frequency tuner ⇒ Adjust cavity frequency

HOM-absoliter ⇒ Damp Higher-Order Modes

> Input Coupler ⇒ Couple RF power into cavity

RF cavity Inside He vessel

Matthias Liepe

Why superconducting? Wall Losses

Wall losses:Surface currents ($\propto H$)result in dissipationproportional to thesurface resistance (R_s):

 $=\frac{1}{2}R$ diss_ ds.

Matthias Liepe

Why Superconducting Cavities?

Accelerating Mode:

- Superconductor ⇒ very small RF losses
- Q₀: includes RF wall losses only

 \Rightarrow Very high quality factor Q_0

 \Rightarrow Typical: $\mathbf{Q}_0 \approx 10^{10}$!

 \Rightarrow V=20MV \Rightarrow P_{SRF}=15W

 $\Rightarrow \text{Normal-conducting: } \mathbf{Q}_0 \approx 10^4$ $\Rightarrow \mathbf{P}_{nc} = 15 \text{MW}$

$$Q_0 = \frac{f}{bandwidth} \propto \frac{1}{R_s}$$

Advantages of superconducting RF cavities:

- Much lower wall losses (6 orders of magnitude)!
 - \Rightarrow Lower operating costs.
 - ⇒ Can operate at a <u>higher voltage</u> in cw operation or long pulse operation. ⇒ Fewer cavities means less beam distortion.
 - ⇒ Freedom to <u>tailor cavity design</u> to specific accelerator requirements (Power dissipation is not the primary concern!) ⇒ Better beam quality. Higher beam currents.
 - ⇒ Example: Beam current in CESR more than doubled by replacing all copper cavities with superconducting cavities.!

Superconducting vs. Normal Conducting Cavity

- one cell from NLC
- normal conducting cavity
- copper
- 11.4 GHz
- water cooled

- TESLA
- superconducting cavity
- niobium
- 1.3 GHz
- 2 K (LHe)

Fundamental differences due to difference in wall losses.

RF Superconductivity (I)

- **RF** resistance small but finite because Cooper pairs have inertia. \Rightarrow nc electrons "see" an electric field!
- **BCS** theory: Frequency and \bullet temperature dependence of surface resistance at low RF fields (T_c : S.c. transition temperature)

$$R_{BCS} \propto f^2 e^{(-const*T_C/T)}$$
More resistance the helectrons are jiggled around.
More resistance the more inc electrons are excited.
Real live:
$$R_s = R_{BCS} + R_{RES}$$

Matthias Liepe

Real live:

RF Superconductivity (II)

- <u>Critical magnetic RF field</u> limits maximum achievable field in a SRF cavity.
- But: What is the critical <u>RF</u> <u>field</u>?
- Niobium: Weak type II superconductor
- Measured: Meissner state can persist meta-stably above H_{c1} in RF fields (superheating field H_{sh})
- But: How far above H_{c1} is the open question! Theory??

Type II Superconductor

Matthias Liepe

The Struggle for high Fields

The Real World...

Vertical Cavity Tests

- Work horse of cavity studies is the vertical test arrangement.
- Measure Q_0 (wall losses) v. E_{acc}
- It permits rapid turnaround for tests.

• Cover cavity exterior with special thermometers to detect heat dissipated by defects

Matthias Liepe

• Use an SEM and Auger Analysis to examine the cavity interior.

Matthias Liepe

Cornell has been prominent in overcoming all these limitations

Matthias Liepe

Problem 1: Multipacting (1970s)

• MP is due to an exponential increase of electrons under certain resonance conditions:

June 1

 Not all potential barriers are active because electron multiplication has to exceed unity.

Multipacting: Solution

• In cavities, solved multipacting by adopting a elliptical cell shape:

350-MHz LEP-II cavity (CERN)

Electrons drift to equator, where electric filed is ≈ 0 . \Rightarrow MP electrons don't gain energy. \Rightarrow MP stops.

Matthias Liepe

Problem 2: Thermal Breakdown (1980s)

• Thermal breakdown (quench) is usually triggered by a normal conducting defect, when it heats the Nb above the critical temperature.

0.1 – 1 mm size particles can cause TB!

Matthias Liepe

Thermal Breakdown: Solutions

- Avoid defects:
 - ⇒ Clean niobium and cavity production.
 - \Rightarrow Clean assembly.
- Tolerate unavoidable defects but "neutralize" them by thermally stabilizing them.
 - ⇒ Improve the thermal conductivity of niobium.
 - ⇒ Improve purity of the niobium.

Problem 3: Field Emission (1990s)

- Emission of e⁻ from cavity surface in high E-fields.
- All emission is associated with (conducting) <u>microscopic</u> particles.
- Acceleration of electrons drains cavity energy.
- Impacting electrons produce heating of the surface.

Matthias Liepe

Field Emission: Solutions (I)

- Buffered Chemical Polishing (BCP):
- Etching removes damaged surface layer (100 μm)

• High Pressure Water Rinsing (HPR):

Rinsing of cavities with up to 1000 psi ultra-pure water jets removes many particles.

Matthias Liepe

Field Emission: Solutions (II)

- Clean Room Technology:
- All cavities and vacuum components are cleaned and assembled in clean rooms.

High-Power Processing:

- In some cases applying of high power can cause the destruction of field emitters and improve the cavity performance.
- ⇒ Reduction of field emission after the cavity is installed in the accelerator

Matthias Liepe

Problem 4: High Field Q-Reduction (>1995)

- High field Q-slope without field-emission!
- Effect not 100% clear yet...

Matthias Liepe

• Electropolishing of cavities

Low temperature (110 C) "in-situ" baking

Matthias Liepe

State of the Art Cavity Performance We know how to make good Nb cavities, but we don't understand well why it works... 10 **Recovered by low** Low field Q-drop temp. (110 C) "in-**Medium field Q-drop** situ" baking Ő **10¹⁰** Sharp drop of the quality factor at B ≅100 mT **10⁹** 10 30 0 20 40 E acc [MV/m]

Matthias Liepe

How to get high fields? A Recipe

Stamping

High T bake Chemical Etching

110C bake

Mounting in Clean Room

High Pressure Rinsing

Matthias Liepe

Reentrant Cavity Shape

Matthias Liepe

Cavity production by Cornell, cavity treatment and test by KEK.

Matthias Liepe

Basic SRF Cavity Research after 30+years: What's left?

- After overcoming many limitations (normalconducting inclusions, field emission, ...), we finally can <u>study the basic superconducting RF</u> <u>behavior</u> of niobium!
- Two mayor open physics questions in SRF:
 - Why does the RF surface resistance increase strongly at high RF fields?
 - What is the RF critical magnetic field?
 How and when does flux penetrate at high RF field?

SRF for future Machines around the World

Planed SRF Driven Accelerators

Matthias Liepe

SRF at Cornell

History of SRF for Accelerators (I) From a nice technology ...

- 1965, Stanford U.: R&D on superconducting cavities starts
- 1968, Cornell: R&D on superconducting cavities starts
- 1975, Cornell Electron Synchrotron: First SRF cavity in a high-energy-physics accelerator
- 1982, CESR: First test of a SRF cavity in a high-energyphysics storage ring.
- 1990, Cornell: First TESLA (International Linear Collider, ILC) workshop
- 1993, Cornell : First ILC multi-cell cavity passes 25 MV/m (TESLA design gradient)

... to the dominating choice of accelerating structure

- 1990 to present, Tristan, CESR, HERA, LEP, KEK-B, ...: High-energy-physics accelerators use SRF
- 1994, CEBAF: Operation starts with 310 cavities. Cavity design and R&D by Cornell
- 1999, CESR: First storage ring runs entirely on SRF cavities.
- 2000 to present: Storage ring light sources are using the CESR SRF cryostat design (Taiwan, Canada, England, China)
- 2004: International Technology Recommendation Panel recommends cold SRF technology for International Linear Collider (ILC)
- 2005: First cavity passes 50 MV/m (Cavity design and production by Cornell)

Cornell and SRF around the World

Matthias Liepe

Cornell and SRF around the World

Matthias Liepe

June 12, 2006

Hot Topics and R&D at Cornell

- Highest gradients in solid niobium cavities
- What is the *RF* critical field of superconductors?
- Low cryogenic losses at high fields
 - Surface roughness, density of grain boundaries, pollution at metal-oxide interface?
- Alternative materials for superconducting cavities
 - Nb3Sn, high Tc superconductors,...
- Interaction between cavity and beam
 - Excitation and damping of higher-order-modes, beam focusing, emittance growth, THz radiation, ...
- Digital RF field control

From Experimental Work to Theory

Superconductor at T>0, H>0 Nonlinear BCS Theory

$$R_{s}(\beta) = \frac{\omega^{2}}{T} \exp\left(-\frac{\Delta}{k_{B}T}\right) \sum_{n=0}^{\infty} g_{n}(\beta) \left[A(\omega) + \frac{1}{2n+1}A\left(\frac{\omega}{2n+1}\right)\right],$$

$$g_n = \frac{(2n+1)!!}{2^{n-1}(2n)!(n+2)!(n+1)} \int_0^{\pi} \sin^2 t (\beta_{dc} + \beta_0 \cos t)^{2n} \frac{dt}{\pi},$$

$$R_{bcs} = \omega^2 \frac{A(\omega)}{T} \exp\left(-\frac{\Delta}{k_B T}\right), \qquad A \propto \frac{\Delta \mu_0^2 n_0 e^2 \lambda^4}{p_F} \ln \frac{k_B T \Delta \xi^2}{\hbar^2 \omega^2 \lambda^2}$$

Vertex Penetration at Grain Boundaries?

$$\widetilde{R}_{s}(T,H) = R_{s}(T,H) \left[1 + \frac{g}{1 - (H_{0}/H_{b0})^{2}} \right] + \frac{R_{n}(H_{0})}{1 - (H_{0}/H_{b0})^{2}}$$

From Small to Large

Flux Penetration at Grain Boundaries

Surface Roughness Field Emission

SRF Tour

SRF R&D Work at Cornell: Newman Basement

Basic SRF research, SRF for CESR, Neutrino factory/ μ-Collider, ILC, Cornell ERL, ...

Fun in the Newman Basement

Matthias Liepe