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It is important to determine the position and optical properties of a beam in a

storage ring at many points. With better position information, luminosity and the

ring’s overall performance can be improved. Data taken at beam position monitors

(BPMs) can be structured and processed to yield information proportional to the

Twiss and coupling parameters. When the distance and transport matrices between

a pair of BPMs is known, the length will provide the means to determine the scale

of these parameters. This paper will focus on the theory based software written for

this analysis and the algorithms used to calculate transport elements throughout the

ring from turn-by-turn position measurements of a sinusoidally excited beam. These

algorithms, written in FORTRAN 90, can be applied to CESR, any other storage

ring, and possibly the damping rings of linear accelerators in the future.

I. INTRODUCTION

When a series of quadrupole focusing magnets are arranged properly, their focusing -
defocusing (focusing in one transverse plane, and defocusing in the other) properties have
a net focusing (in both transverse planes) effect. However, due to the inexact placement of
these magnets, particle motion in the beam may get coupled between the horizontal and
vertical planes. Since CESR has very flexible magnet controls for the ring, information
about optical errors may be applied to correct the optics.

To understand the motion of the beam through the ring, the transport parameters (Twiss
and coupling parameters) must be calculated. The beam is excited in one of its dipole modes
of oscillation, then 1024 turns of data will be taken at all of the active BPMs in the ring.
This data is structured into a position history matrix having size dependent on the number
of turns the beam makes around the ring, and twice the number of active BPMs. The
position history matrix is analyzed using singular value decomposition (SVD). This returns
three new matrices T, Π, and Λ. These matrices contain data that can be to identify the
eigenvectors and their eigenvalues for the motion. A more detailed analysis of this data
provides values for various transport elements at BPMs around the ring, which is used to
more accurately determine the beam’s optical properties.

II. FILE INPUT

The analysis that follows is dependent on the existence of two modes of excitation in
the motion of the beam. If the modes are excited on separate runs, there are two files for
analysis; one containing the horizontal modes and a second containing the vertical. If both
modes are excited in one run, there is one file containing both modes. The data that is
taken on a run consists of ordered pairs of X and Y positions taken at each BPM. There is
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one pair for each number of turns in the run at each BPM. This data is then structured into
a position history matrix as shown in Figure 1.
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FIG. 1: Position History Matrix where X1,1 is the horizontal position for the first turn at the first

BPM.

The matrix has rows for each turn around the ring and twice the number of BPMs for
columns. Dividing this matrix by the square root of the number of turns is a normalization
for subsequent calculations.

III. SVD + FFT

Once the data has been structured in the position history matrix it is processed in an
SVD [5] algorithm. This returns the matrices T, Π, and Λ as shown in figure 2.
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FIG. 2: SVD analysis.

Π has dimensions 2*BPMs x 2*BPMs and contains positional eigenvectors and infor-
mation about phase advance around the ring. T has dimensions TURNS x 2*BPMs and
contains temporal data for phase advance of the beam motion around the ring turn by turn.
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Λ contains all zeros except for along its diagonal and so essentially is one dimension that is
the length of BPMs or TURNS, whichever is shorter. Λ contains eigenvalues that correspond
to the eigenvectors located in Π and T.

As stated above, the analysis requires two independent modes of motion be excited in
the data being analyzed. This being the case, there are 4 columns of data in the matrices
to be analyzed. Each mode of motion will have two columns of sine/cosine like data. The
analysis requires knowing which columns of Π, T and Λ correspond to these modes. This
step requires using a Fast Fourier Transform (FFT) algorithm on the T eigenvectors to
identify these columns. T eigenvectors of the modes being excited show strong signal peaks
in comparison with other columns of T where the signal is made up of noise from the
machine.

For columns to be a positive match for analysis the lambda values of the matching columns
must be large by comparison to the other columns’ lambda values. In Figure 3 it is possible
to see the modes of excitation in Lambda values. The file is one where there was a small
amount of excitation in both modes so the 2nd and 3rd values of lambda are representative
of one mode and the 3rd and 4th values are representative of the 2nd mode. The first value
of Λ can be disregarded as it represents a DC offset in the data.
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FIG. 3: A file’s Lambda values.

In the algorithm the threshold value of lambda is established by taking an average of the
last 10 values of lambda. Any potential column match then requires the lambda value in
that column to be greater than the average. In the FFT analysis, the matching columns
will have peaks in the same frequencies. In the algorithm it becomes possible to look for
matching frequency peaks located in the same columns where lambda values are larger than
the lambda average specified above. Figure 4 shows the FFT results from one column that
was analyzed.
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FIG. 4: Potentially matching columns show peaks.

The matching columns of Tau also have cosine or sine like appearances as shown in figures
5 and 6. Based on all of these criteria, it becomes relatively easy to isolate the columns of
interest for later analysis.

FIG. 5: Column of tau exhibits sine like quality.

FIG. 6: Column of tau exhibits cosine like quality.
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IV. RESULTS

Once two columns have been matched, transport elements are calculated using equations

given in [1]. These elements include γ2
× β ratios, ( 1

γ
) ∗

√

βa

βb
C-Bar elements, and phase

advance. These values can be graphed to compare with design values as shown in Figure 7.
For additional transport elements to be calculated, it is necessary to have a pair of BPMs
with a known distance and beam transport between them. The simplest case would be a
space such that the beam’s motion is not changed. A drift space will work most conveniently
here but a section of bend magnet with known focusing properties could also work. This
information allows computation of values for (beta, alpha)[3], (C-bar, gamma)[4], and the
action (magnitude of the shaking used to excite the beam) at the BPMs at the start and
end of the distance L.

FIG. 7: Calculated values (plotted) compared to design (written values).

There is a lack of BPMs separated only by drift spaces around the ring, therefore it is not
possible to calculate all the transport elements for all BPMs around the ring. An average
value can be calculated for the action of the beam however and using this value it is possible
to calculate some transport elements everywhere in the ring. These elements are γ2

× β,
1

γ
C-bar (1,1), (1,2), (2,2), and

√

βa

βb
C-bar (1,1), (1,2), (2,2). When comparing calculated

β and C-bar values to design values, it is easiest to use β and C-bar elements that are
paired with γ. γ is very close to 1 and therefore γ2

× β elements and 1

γ
C-bar are very good

approximations to isolated β and C-bar elements. 1

γ
C-bar can be seen in figure 8.

V. CONCLUSIONS

Concluding the project calls for verifying our results against projected results and using
data taken in different methods. The results obtained by the above process can be checked
against the design data generated by CESRV[1]. The accuracy and sensitivity of this process
can also be checked by running synthetic data through the algorithms. A synthetic file with
no noise provided verification that the algorithms return results in agreement with design
data.

The synthetic data had noise added to it with the use of a random number generator.
Each element in the position history matrix has a different gaussian error value added to it.
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FIG. 8: Inverse Gamma C-bar is very close to design C-bar values.

This method demonstrated the sensitivity of the hardware to noise in the machine, and it also
served as a check of accuracy in the algorithms. By making histograms of values returned
for various transport elements after noise was added to the position history matrix, it was
determined if certain BPMs consistently return questionable data. This was evidenced by
an inconsistency in standard deviations in the values of transport elements at those BPMs.

Preliminary results indicate that the process is sound. 100 synthetic files were created
having 1024 turns of data in each file. The standard deviation for these files in the values
of phase advance and the beta function were consistently small at each BPM. See Figure 9.
The statistical analysis on phase advance also returned small deviation as seen in Figure 10.
Following this analysis, 100 synthetic files were run with only 512 data files. The smaller
amount of data led to larger standard deviation as could be expected, however the deviation
was still small. Since the synthetic data continually return values well within acceptable
error compared to the design values, we could conclude that the values we get with the real
data might be correct, even though the percentage difference between design values is large
in places.

The beam motion analysis method described here defines C-bar(2,1) in two different
equations. The two values are not equal due to noise in the machine. It remains to be
determined if a weight system needs to be applied to the differing values to come to a more
accurate solution. The histogram analysis described above will be useful in making that
determination.

Future analysis needs to continue with more files to determine whether the algorithms will
continually return reliable data. Experiments will have to be repeated to make sure transport
elements are assigned realistic values consistently. More experiments will be studied to
determine the effect of varying optical settings in the ring. Also, it seems likely that a range
of action (shaking) values exist for which matching columns is optimal but verification is
needed. Finally, the output format will have to be changed to allow CESRV to make use of
optical analysis.
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FIG. 9: The Standard Deviation for Betas of synthetic data show small relative error.

Standard Deviation for Phase Advance
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FIG. 10: The Standard Deviation for Phase Advance of synthetic data show small relative error.
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