In Situ Modeling of the ERL Injector

Michael Rosenman
Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213
(Dated: August 8, 2006)

The following details a Java- and Matlab-based interface between EPICS and
the beam simulation code Parmela for the Energy Recovery Linac (ERL) injector.
The purpose of this interface is to allow testing of beam codes against actual beam
measurements, the results of which will aid in the design and operation of the future
ERL. At present, the interface is fully functional and ready for use once the beamline
is operational.

I. INTRODUCTION

The Energy Recovery Linac (ERL) is a future X-ray source being built at Cornell Uni-
versity. The ERL is intended to accelerate high-energy electrons to produce X-rays and
then deliberately decelerate them to recovery their energy. It is hoped that this design will
produce X-rays of higher quality for new type of experiments.[1]

For the ERL to run properly, its injector must produce intense, high-brightness beams.
Our ability to construct and operate such a machine depends heavily on our understanding
of beam dynamics. Although beamlines can be tested with simulation codes, these codes are
only as good as our understanding of the beam. Therefore, a means of testing simulation
codes against an actual beam is needed.|2]

The goal of this project was to construct a programming interface between the Exper-
imental Physics and Industrial Control System (EPICS) and the beam simulation code
Parmela. This interface would allow researchers to set up a virtual injector and then test it
against actual beam measurements. What follows is a description of this interface.

FIG. 1: The ERL Injector

II. OVERVIEW

For this project, we investigated several beam simulation codes and finally decided to
use the Los Alamos National Laboratories program Parmela, due to its ability to accurately
model the injector’s bends and correctors.[3] The interface was intended to be as modular as

possible, so that a new simulation code could easily be substituted for Parmela. Unfortuately,
Parmela itself made this goal difficult to fully realize.

The interface consists of the programs EPICSgui and PlotGUI, written in Matlab, and
the programs RunParmela, InputConverter, and ProcessOutput, written in Java. The flow
of control goes as follows:

EPICSgui is the main user interface. It allows the user to set the parameter values via
sliders and text fields and to read data from/write data to EPICS with the Read EPICS
and Put Params commands, respectively.

When the user commands a simulation to be run, EPICSgui generates an input file (whose
name may be default, or may be chosen by the user), which lists the name of each parameter,
followed by its current value. It then calls the Java program RunParmela.

RunParmela begins by calling InputConverters convert method, which parses the in-
put file and a beamline template file, creating a new file called ParmelaExecutable.acc, in
which the template file’s parameter values have been replaced by those in the input file.
RunParmela then commands the Parmela simulation to run, but does not call the post-
processor Pargraf. Instead, it invokes the process method of ProcessOutput, which uses the
data in the Parmela-generated file TAPE3. TXT and generates a data file (whose name may
also be default, or chosen by the user).

Control then returns to EPICSgui, which calls PlotGUI and passes it data read from the
data file. The process can then begin again. See Figure 1 for a graphical depiction of the
control flow.

EPICS
| s 1

l Process VYariables ;

// Matlab

EPICSqui | Data file PlotG U

L%Eiifl"'] (o)

\\

RunParmela t-...._
/A & Data file | Java
|Inpu?ﬂ _I Parmela Tf‘_fjfi_fﬁ_]
7“"‘ Executable 1
InputConverter ProcessOutput
X
Parmela

FIG. 2: Flow of Control

III. PROGRAM ELEMENTS
A. Matlab Programs

These are programs the user directly interacts with.

1. EPICSgui

EPICSgui is a Matlab graphical user interface that coordinates the interaction be-
tween EPICS and Parmela. The user uses EPICSgui to enter simulation parameters, read
from/write to EPICS, and run the simulation. EPICSgui uses the labca package to interface
with EPICS. It includes two buttons, Read Epics and Put Params, which read the values of
certain parameters from EPICS or write the current values of those parameters to EPICS,
respectively.

The Run Simulation button begins the process of running the simulation. First, the GUI
creates an input file where the parameters are represented in the following format

name = value

The name of each parameter is hardwired into the GUI. These names have been selected
to match the parameter names given in the Parmela template file. These names must match
in order for the InputConverter program to function properly. (See below for information
on InputConverter). In addition, each parameter is multiplied by a corrective factor to
transform EPICS-useable parameters (such as solenoid current) into Parmela-useable ones
(such as solenoid field).

The GUI then calls the Java program RunParmela, passing it the input file, a template
file (Template.acc), the name of the Parmela executable (ParmelaExecutable.ascii), and the
name of the data file. (See below for a description of RunParmela.) When RunParmela is
finished running, the data file will have been created and finalized. EPICSgui then loads
the data from this file into a data field. EPICSgui also has data fields known as prevData
and lastRunData, for use in plotting difference orbits. Both initially are empty. Before each
run of the simulation, lastRunData is changed to the data from the last simulation. If the
user clicks on the Reset Orbit checkbox, EPICSgui will also update prevData to the values
stored in lastRunData. If this box is unchecked, prevData will not be changed.

EPICSgui then calls PlotGUI, passing it prevData and data. This completes the simula-
tion. See below for more information on PlotGUI.

2. PlotGUI

PlotGUI is used to display plots of data generated by the simulation. PlotGUI cannot
be called on its own; it must be activated by EPICSgui. When EPCISgui calls PlotGUI, it
passes to it the data contained in the fields data and prevData. These are stored and used
as the basis for plots.

PlotGUI can generate 18 different plots from the data field. In each case, the values are
plotted against the distance Z down the beamline. (See Table I for list of plots). For each
plot, PlotGUI scales the output according to default scales hardwired into the GUI. The
plot can be scaled as desired using the four text fields and Rescale button below the axes.

TABLE I: Plots generated by PlotGUI

Value Formula Units
<X> Y(X)/numV alues m
<Y> YY) /numValues m
<PX> Y(PX)/numV alues eV/c
<PY> Y(PY)/numV alues eV/c
<PZ> Y(PZ)/numV alues eV/c
Xrms VE(X— < X >)?/numValues m
Yrms VEY = <Y >)?/numValues m
Zrms VE(Z— < Z >)2/numValues m
PXrms VE(PX— < PX >)2/numValues eV/c
PYrms VE(PY — < PY >)?/numValues eV/c
PZrms VE(PZ— < PZ >)?/numValues eV/c
X Emittance V(Xrms? « PXrms2) — (X(X * PX)/numValues)? m
Y Emittance VYrms?x PYrms2) — (S(Y * PY)/numV alues)? m
Z Emittance V(Zrms? x PZrms?) — (X(Z * PZ) /numV alues)? m
X’ <PX>/<PZ> rad
Y’ <PY>/<PZ> rad
KE (VMC22+ < PZ >2 — MC2)/1e6 @ MeV
NumParticles NA NA

MC?2 is the value 510999.06, or mc? for electrons in eV /c. The correction factor le6 is used to convert
the result into MeV.

If the Difference Orbit checkbox is checked, PlotGUI will plot a difference orbit, in which
the values from prevData are subtracted from the values from data, and the difference is
plotted.

B. Java Programs

The Java programs run the Parmela simulation and return the data to EPICSgui. The
user does not interact with the Java programs directly, only through EPCISgui.

1. RunParmela

RunParmela coordinates the actions of the Java programs and communicates with EPIC-
Sgui. EPICSgui passes it the input file name, the name of the template file (Template.acc),
the name of the Parmela executable (ParmelaExecutable.ascii), and the name of the data
file.

RunParmela first calls the convert method of the program InputConverter, passing it the
input file, template, and Parmela executable names. See below for more information about
InputConverter. Once it has finished running, the Parmela executable file will be ready for
use by Parmela.

RunParmela then creates a batch file,* ATF.bat”, which is used to run the Parmela

simulation. (Parmela executables cannot be called directly: they must be called via a
batch file). In particular, RunParmela commands Parmela to run but does not call the
Parmela postprocessor Pargraf. Instead, it calls the process method of the Java program
ProcessOutput (see below), passing it the name of the data file from EPICSgui. RunParmela
then terminates.

2. InputConverter

InputConverter generates Parmela executables based on the EPICSgui input file, which
lists the parameters and their values, and a Parmela template file, Template.acc.

Template.acc is itself a functional Parmela input file which details the structure of the
virtual beamline. For the program to run properly, the template file must have certain
properties. First, each input line must be preceded by a comment line (indicated by a “!”
in Parmela), which lists the name of each parameter in the line and its position, with 1
indicating the first element after the name of the input line. There must also be a blank
line between each pair of lines. Hence a typical pair of lines in Template.acc has the form

'Paraml 1 Param2 2 Param3 3
NAME # # #

where the # signs stand for parameter values (which can be strings or numbers). It
is important to note that the names given for the parameters must match those stored in
EPICSgui and the input file it generates, or the program will not work. Any changes to the
beamline should be made by changing the file Template.acc, as this is the only file in the
program that records the structure of the beamline.

InputConverter first reads in the input file generated by EPICSgui. Each line of this file
will have the form.

name = value

where ‘name” is the parameter name given in EPICSgui. InputConverter reads and
parses these lines, storing the names in an params to change list and the values at the same
index of a values list.

InputConverter then steps through Template.acc, parsing the input lines. The NAME
of each input line is written out to ParmelaExecutable, and then InputConverter analyzes
each parameter following the NAME. If a parameter at a specific index is in the params to
change list, InputConverter replaces its value with that given in the wvalues list and writes
the result to ParmelaExecutable. If the parameter is not in the list, InputConverter simply
copies the parameter’s value from Template.acc to ParmelakExecutable.acc.

Once InputConverter is finished, RunParmela runs a Parmela simulation using the file
ParmelaExecutable.acc.

3. ProcessOutput

ProcessOutput processes the output files generated by Parmela into a form suitable for
plotting and analysis. For ProcessOutput to work, the InputType parameter of the INPUT
line must be set to 9 in ParmelaExecutable.

When input type 9 is used, Parmela will generate a file called TAPES3.txt, which lists the
positions and momenta of each particle at the end of each beamline element. These data
are broken into groups by beamline element, and each group begins with a line representing
the reference particle.

For each beamline element, ProcessOutput reads in the positions and momenta of the
particles, skipping over the reference particle, and averages them, writing these averages to
the data file specified by EPICSgui and passed to it by RunParmela. It then uses these
averages to calculate several quantities, such as rms values, emittances, divergence, and
kinetic energy. All of these values are written out on the same line of the data file. Hence
each line of the data file represents these values at the end of each beamline element. The
data file can then be used for plots by PlotGUI.

IV. MODULARITY ISSUES

Although the interface was desgined to be modular, and allow easy substitution of new
simulation codes, several attributes of Parmela have complicated this.

First, Parmela does not permit comment lines everywhere. In particular, there are certain
input namelists (POISSON and TITLE) that must be followed immediately by an input
string. Hence InputConverter has been designed to look for these lines and deal with them
as a special case. While this does not make it incompatible with other programs, it requires
extra processing steps that could slow down overall execution.

Second, Parmela may only be called through a batch file. RunParmela therefore generates
a batch file and uses it to run the simulation. This would have to be changed to run a different
program.

Finally, the Parmela output file, TAPE3. TXT, has a very specific structure that Proces-
sOutput is designed to recognize. As other simulation programs are likely to produce output
files with a different structure, ProcessOutput would have to be reconfigured to work with
them.

V. CONCLUSIONS

The interface is currently functional and can be used for beamline testing. In addition,
full documentation has been written.

There remains one aspect of the program that requires further work. The exact values
for the corrective multipliers used to translate EPICS parameters into Parmela parameters
are not known, and must be experimentally determined and set once the the injector test
beamline is operational. Otherwise, the interface is ready for use.

VI. ACKNOWLEDGMENTS

I would like to acknowledge Ivan Bazarov and John Dobbins of Cornell University, who
oversaw this Research Experience for Undergraduates project and assisted me with my work.
This work was supported by the National Science Foundation REU grant PHY-0552386 and

research co-opertaive agreement PHY-9809799.

[1] For more information on the ERL, see

e Eds. S.M. Gruner, M. Tigner; I. Bazarov, et.al. “Study for a proposed Phase I Energy
Recovery Linac (ERL) synchrotron light source at Cornell University”, CHESS Technical
Memorandum 01-003, aka JLAB-ACT-0104, 2001

e D.H. Bilderback, I.V. Bazarov, et.al.” Energy-recovery linac project at Cornell University”,
Journal of Synchrotron Radiation, Vol. 10, Part 5 (2003) 346-8

[2] For more information on the ERL injector, see

e [.V. Bazarov, C.K. Sinclair, “Multivariate optimization of a high brightness dc gun pho-
toinjector”, Physical Review Special Topics: Accelerator Beam, Vol. 8, 034202 (2005)

[3] For more information about Parmela, see

e Young L.M., PARMELA, Los Alamos National Laboratories, LA-UR-G6-1835, Los
Alamos, NM (2000)

