Accelerator Physics Research Topics at the Cornell

 Electron/positron Storage Ring
Abstract

The CESR operations group maintains an active research program covering a variety of topics with the purpose of maintaining and advancing its position the forefront of light source facilities, ensuring the continuing competitiveness of the Cornell High-Energy Synchrotron Source CHESS. Our work includes multiple submissions to each annual International Particle Accelerator Conference, as well as other venues, and is regularly published in refereed journals. This talk presents an overview of active areas of investigation.

Jim Crittenden

Accelerator Physics Seminar / Journal Club
3 November 2022

Online optimization techniques
 Transverse resonance island buckets (TRIBS)

Impedance measurement program
Ambient electrical noise: identification and mitigation
Beam position detectors: monitoring and diagnostics
Beam-based calibration and alignment of sextupoles
Systematics of beam size measurement with sextupoles
Accelerator magnet design

Cornell Laboratory for
Accelerator-based Sciences and Education (CLASSE)

Online dynamic aperture optimization techniques

 See S.T.Wang journal club 10/13/2022- Traditional method
- Tuning iteratively (cycle through all variables manually or automatically)
- Robust conjugate direction search (RCDS) ${ }^{1}$
- Powell's algorithm to minimize the objective and update the conjugate search direction
- Robust line scan to find the minimum on each direction
- Multi-variables but one objective (could expand to multi-objective)
- Develop a conjugate direction set which cannot be modeled
- Successfully demonstrated in several light sources (SPEAR3, ESRF, NSLS2, ...)
- Dimension-reduction and genetic algorithm ${ }^{2}$
- Reduce number of variables and create conjugate knobs
- Demonstrated in the low emittance tuning (minimize vertical emittance) at CESR
- Machine-learning algorithm ${ }^{3}$ and other algorithms
- Online DA optimization at CESR
- Create conjugate DA knobs (Will Bergan, PhD thesis, 2020)
- Tune with RCDS method

Relatively recently conceived project. Practical applications for CHESS ops. Experiments scheduled for this February. Stay tuned.

Cornell Laboratory for
Accelerator-based Sciences and Education (CLASSE)

Transverse Resonance Island Buckets See S.T.Wang journal club 10/13/2022

$2^{\text {nd }}$ stable orbit with Transverse Resonance Island Buckets - TRIBs
$3^{\text {rd }}$ order resonance
Island orbit closes

The single-shot image (one turn) from a gated camera shows the particles populate all three buckets.

TRIBS demonstrated at CESR.

Successfully modeled using the Bmad software library, allowing validation of various effects such as the dependence on coupling.

One turn

100 turn average

Impedance measurements as a monitor of vacuum chamber history

Vacuum chamber heat damage discovered $10 / 25$ by visual inspection during undulator installation.
Wall thickness: 0.5 mm . Aperture reduced from $\mathbf{4 . 6} \mathrm{mm}$ to 2.3 mm .

Historical measurements of k_hom (2019-2022): -4.54 $\pm 1.04 \mathrm{~V} / \mathrm{pC}$ Tuesday's measurement is a significant increase in k_hom

Year-over-year monitoring of transverse and longitudinal impedance

This example shows the longitudinal impedance (higher order mode loss) measured using the arrival time difference of two bunches with differing populations.

This is a "smoking gun" showing a change likely due to a heating event.

The CESR Test Accelerator project (2004-2014) provided the CBPM system, which has turn-by-turn and bunch-by-bunch resolution.

Monitoring during CHESS operations

The leading bunch of the 45 bunches carries a fixed smaller bunch population (about $3 \mathrm{e} 10 \mathrm{e}-, 2 \mathrm{nC}$).
Its turn-averaged orbit is measured once per minute.

The beam current is topped off about every 10 minutes. During these injection cycles, turn-by-turn, bunch-by-bunch BPM data is recorded.

Ana Isabel Nica, 2021 REU program
Leveraging the Power of Neural Network AI to Improve the
Precision on the Beam Position Reconstruction at CESR
Mentor: A.Chapelain

Project Examples

V. Khachatryan: Analysis of the turn-byturn data with fits to noise, tunes, and orbit positions
A. Chapelain: Long-term database development and orbit history web
pages

AC \& STW: Detector signal distribution model parameterization to monitor pedestal width, time jitter and more

Next-generation BPM system at CESR

10 Hz continuous beam position monitoring:

x micron-level precision on x / y positions from averaging 1,000s of turns
x new hardware, firmware and software being designed and developed, e.g.: full stack interactive web app for analyzing/monitoring current and past data
> back-end (server side): databases storage for data and metadata, data processing and analysis and other behind-the-scene heavy lifting
> front-end (client side) : web-browser user interface to display and interact with monitoring information (analyzed data, data quality, alarms/warnings)

New interlock capability:

x BPM will provide interlock capability monitoring turn-by-turn x / y beam position
\rightarrow in-house custom made alternative to Libera BPMs that are currently used for beam position corrections and interlocking

CESR BPM errors

CESR BPM aims at sampling the top of the waveform from the 4 EM pick-ups. Sources of error thoroughly modeled in Monte Carlo simulations and compared to real data \rightarrow sources well understood:
> x sampling clock jitter σ_{j} x peak alignment accuracy t_{0}

> $\}$precision of ~10 microns on turn by turn position

Developing method for in-situ error measurement using BPM data:
shape of readout distribution set by values of individual error sources \rightarrow multiparameter fit. Fit uses our derived PDF for clock jitter and peak alignment:

$$
f_{X}(x)=\frac{e^{-\frac{\left(a \cos (x)-\omega t_{0}\right)^{2}}{2\left(\omega \sigma_{j}\right)^{2}}}+e^{-\frac{\left(-a \cos (x)-\omega t_{0}\right)^{2}}{2\left(\omega \sigma_{j}\right)^{2}}}}{\omega \sigma_{j} \sqrt{2 \pi\left(1-x^{2}\right)}}
$$

Cornell Laboratory for
Accelerator-based Sciences and Education (CLASSE)

Analysis of bunch-by-bunch, turn-by-turn data V.Khachatryan

Vert tune vs turn number (all BPMs)

Phase and orbit analysis of t-b-t data

Noise analysis in reconstructed vertical orbit position oscillation.
Information available for all BPMs, so sensitive to ambient noise around the entire ring.

Fit to the vertical tune for subsets of turns including noise terms to identify sources of magnetic noise around the ring.

Ambient electrical noise: identification and mitigation V.Khachatryan
V.K. et al, Magnetic Field Noise Search Using Turn-by-turn Data at CESR, MOPOTK041, IPAC’22, Bangkok, Thailand

Noise source identification method: $\mathbf{3 0 0} \mathbf{~ H z}$ noise generated

> Induced 300 Hz noise at 510.2 m using a wave-form generator controlled magnet
$>$ 65536-turn $\left(2^{16}\right)$ data recorded
> The reference orbit is the average over all 65536 turns
> 50-turns are used for each orbit (difference) calculations.

> The analyzer found two kicks in this example: $\mathrm{s}_{1}=511.1 \mathrm{~m}, \mathrm{~s}_{2}=53.6$ $\mathrm{m}, \theta_{1}=3.5 \mu \mathrm{rad}$ and $\theta_{2}=-0.57 \mu \mathrm{rad}$.

The summary plot for the sum kick angle (absolute) as a function of s-coordinate shows a sharp peak. The red curve is a Gaussian fit with mean at 511.6 m and $\sigma=1.27 \mathrm{~m}$.

The kick angle as a function of turn number shows the expected 300 Hz frequency (1300 turns between two peaks).

Analysis of t-b-t data identified locations of electrical noise. Sources found were fans, power supplies, and the synchrotron. Removing the sources reduced the noise in the data from 7.5μ to 3.5μ. Sensitivity to kicks was 1 urad (0.2 Gm) .

BECOME A CLASSE TOUR GUIDE!

Are you interested in sharing the exciting science of CLASSE with the public? Do you want to
build your communication skills while highlighting your research at CLASSE?
Ated
2022 CHESS-U REU Project Ishaan Mishra
Rose-Hulman Institute of Technology Mentors: J.C. and S.T.W.
an mor sout becoming c cusss tour vide

OCTOBER 21²T, 2022 @1PM PSB 301

Lorentz force equation

$$
\vec{F}=q \overrightarrow{\mathrm{v}} \times \vec{B}
$$

Sextupole magnetic field

$$
B_{\mathrm{y}}(\mathrm{x})=B_{0} \mathrm{x}^{2}
$$

Beam bunch Gaussian charge distribution

$$
q=q_{0} \int_{-\infty}^{+\infty} \exp \left(\frac{\left(\mathrm{x}-\mathrm{x}_{0}\right)^{2}}{\sigma^{2}}\right) \mathrm{dx}
$$

Average force on the charge distribution

$$
\begin{aligned}
\left\langle F_{\mathrm{x}}\right\rangle_{\mathrm{x}, \sigma} & =q_{0} c B_{0} \int_{-\infty}^{+\infty} \mathrm{x}^{2} \exp \left(\frac{\left(\mathrm{x}-\mathrm{x}_{0}\right)^{2}}{\sigma^{2}}\right) \mathrm{dx} \\
& =q_{0} c B_{0}\left(\mathrm{x}_{0}^{2}+\sigma^{2}\right)
\end{aligned}
$$

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Measurement of beam size at the CESR sextupole magnets

Hannah Duan, Cornell undergrad research Abigail Fagan, 2021 REU program Ariel Shaked, Eng. Master's candidate 2023

2D Analytic Derivation

Sextupole field components:

$$
\frac{q L}{P_{0}} B_{\mathrm{Y}}=\frac{1}{2} \mathrm{~K}_{2} L\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right) \quad \frac{q L}{P_{0}} B_{\mathrm{X}}=\mathrm{K}_{2} L \times \mathrm{y}
$$

Assuming initial $\boldsymbol{K}_{\mathbf{2}} \boldsymbol{L}=\mathbf{0}$ and including parabolic and cubic terms, we have three equations with four unknowns:

$$
\begin{gather*}
\Delta K_{1} L=\Delta K_{2} L\left(X_{0}+\Delta \mathrm{x}\right) \tag{1}\\
\Delta p_{\mathrm{Y}}=\Delta K_{2} L\left(X_{0}+\Delta \mathrm{x}\right)\left(Y_{0}+\Delta \mathrm{y}\right) \tag{2}\\
\Delta p_{\mathrm{X}}=\frac{1}{2} \Delta K_{2} L\left[\left(Y_{0}+\Delta \mathrm{y}\right)^{2}+\sigma_{\mathrm{Y}}^{2}-\left(X_{0}+\Delta \mathrm{x}\right)^{2}-\sigma_{\mathrm{X}}^{2}\right] \tag{3}
\end{gather*}
$$

so,

$$
2 \Delta p_{\mathrm{X}}=\Delta K_{2} L\left[\left(\frac{\Delta p_{\mathrm{Y}}}{\Delta K_{2} L}\right)^{2}\left(\frac{\Delta K_{1} L}{\Delta K_{2} L}\right)^{-2}+\sigma_{\mathrm{Y}}^{2}-\left(\frac{\Delta K_{1} L}{\Delta K_{2} L}\right)^{2}-\sigma_{\mathrm{X}}^{2}\right]
$$

which gives

$$
\sigma_{\mathrm{X}}^{2}-\sigma_{\mathrm{Y}}^{2}=-2 \frac{\Delta p_{\mathrm{X}}}{\Delta K_{2} L}+\left(\frac{\Delta p_{\mathrm{Y}}}{\Delta K_{2} L}\right)^{2}\left(\frac{\Delta K_{1} L}{\Delta K_{2} L}\right)^{-2}-\left(\frac{\Delta K_{1} L}{\Delta K_{2} L}\right)^{2}
$$

Including only terms linear in $\boldsymbol{\Delta} \boldsymbol{K}_{2} \boldsymbol{L}$, we have

$$
\sigma_{\mathrm{X}}^{2}-\sigma_{\mathrm{Y}}^{2}=-2 \frac{\Delta p_{\mathrm{X}}}{\Delta K_{2} L}+Y_{0}^{2}-X_{0}^{2}
$$

J.C. et al, Measurement of Horizontal Beam Size Using Sextupole Magnets IPAC'21, $13^{\text {th }}$ International Particle Accelerator Conference, MOPAB253, May 2021, Campinas, Brazil (remote)

Analysis of Difference Orbit and Phase Measurements

$X_{0}=4.943 \pm 0.029 \mathrm{~mm} \mathrm{X}_{0} Y_{0}=3.79 \pm 0.13 \mathrm{~mm}^{2} \quad Y_{0}=0.766 \pm 0.26 \mathrm{~mm} \Delta p_{x} / \Delta K_{2} L=-12.45 \pm 0.28 \times 10^{-6} \mathrm{rad} / \mathrm{m}^{-2}=>\sigma_{x}=1.01 \pm 0.26 \mathrm{~mm}$

Cornell Laboratory for
Accelerator-based Sciences and Education (CLASSE)

Beam-based alignment and calibration of the 76 CESR sextupole magnets
J.C. et al, Progress on the Measurement of Beam Size Using Sextupole Magnets, MOPOTK040, IPAC'22, Bangkok, Thailand

Example of tune change versus
beam position strategy
(D.Sagan / CesrV)

Sextupole offiset measurements

 and reproducibility for76 sextupoles

Our measurements of the calibration correction factors show an RMS deviation of 9.5% with a mean value of $1.009 \pm \mathbf{0 . 0 1 0}$. The uncertainties average $\mathbf{2 . 9} \%$ with an RMS spread of $\mathbf{2 . 0} \%$.

With several exceptions, the RMS spread in the offsets is found to be 0.83 mm . The uncertainties average 43 microns with an RMS spread of 28 microns.

Horizontal orbit kick slope determined from the difference orbit versus the sextupole offset assumed in the optics model

Figure 6: $d x^{\prime} / d k_{2} l$ plotted against the horizontal sextupole offset

There is a strong linear dependence on the value assumed in the lattice model for the sextupole offset in the result for the horizontal orbit kick slope $\Delta p_{x} / \Delta K_{2} L$ obtained by fitting the difference orbit.

The analytic treatment above was based on the position of the beam relative to the center of the sextupole X_{0}. Now we will have to include the sextupole offset $\mathrm{X}_{\text {offset }}$ with

$$
X_{0}=X_{\text {orbit }}-X_{\text {offiset }}
$$

The error in the beam size calculation will depend on the accuracy in our knowledge of the sextupole offset.

The sextupole offset can be obtained from the both calibration data and the K_{2} scan data. Investigations are underway.

Cornell Laboratory for
Accelerator-based Sciences and Education (CLASSE)

Accelerator magnet design and analysis

J.C. \& S.T.Wang, Comparison of Transfer Map Derivation Methods for Static Magnetic Fields,

IPAC'21, $13^{\text {th }}$ International Particle Accelerator Conference, MOPAB253, May 2021, Campinas, Brazil (remote)

Half of one double achromat

Analysis of the multipole content of the
CHIESS-U south arc quadrupole magnets comparing particle tracking results to the simple model implemented in the present CESR optics model used for design and operations.
J.C, Quantitative Assessment of Finite-element Models for Static Magnetic Field Calculations,,

Nucl.Instrum.Meth.A 1005 (2021) 165370

Two criteria:

1) numerical violations of Maxwell's equations,
2) "phantom multipoles" from numerical errors.

Also uses the example of the south are quads.
Plots of accuracy as function of mesh refinement.
V. Khachatryan et al: Helical Wiggler Design for Optical Stochastic Cooling at CESR

IPAC'22, $14^{\text {th }}$ International Particle Accelerator Conference, THPOPT066,12-17 June 2022, Bangkok, Thailand

Helical wiggler magnet designed for field quality, power minimization and to protect against radiation damage.

Prototype built, field measured and compared to finite-element model.

- Beam stability development
- L3/FOFB - VK
- Position corrections
- CBPM gain calibration - ATC
- vBSM alignment $-2 \times 4 \mathrm{hrs}-\mathrm{SW}$
- Sector 7 VBPM devel - Dobbins
- Radiation monitors - VK, JSh
- Optimize gains
- Calibrate
- Benchmarking of new TLDs (RFL, JSh)
- Sector 3 cave neutrons
- 200mA development
- 9×1 running - recover 100 mA condx
- Impedance characterization - JSh
- TRIBs devel - 4x4hrs - SW
- Online DA optimization - $2 \times 4 \mathrm{hrs}+4 \times 4 \mathrm{hrs}-\mathrm{SW}$
2022.10.27

The operations schedule includes one week of dedicated machine studies experiments in February 2023.

- Supplemental slides

- Following M. Billing documentation (CBN 01-6)

- Loss factor $\mathrm{k}_{\text {ном }}$ and wake \underline{W} (as observed at one trailing bunch) are:

$$
\begin{aligned}
k_{H O M} & =2 \pi f_{R F}<V>\sin \phi_{S R}\left(\frac{d \Delta t}{d q_{\text {main }}}\right)-\pi f_{R F}\left(\frac{R}{Q}\right) n_{\text {cells }} \exp \left[-\frac{1}{2}\left(\frac{2 \pi f_{R F} \sigma_{z}}{c}\right)^{2}\right] \\
W & =2 \pi f_{R F}<V>\sin \phi_{S R}\left(\frac{d \Delta t}{d q_{\text {main }}}\right)-k_{H O M}
\end{aligned}
$$

\rightarrow Focus on $\mathrm{k}_{\text {ном }}$ today
$f_{R F}=R F$ frequency
$<\mathrm{V}>=$ Total RF voltage
$\phi_{\mathrm{SR}}=$ Synchronous phase without beam loading
$\mathrm{q}_{\text {main }}=$ charge in main bunch (see next slide)
$(R / Q)=$ property of RF cavities
$\mathrm{n}_{\text {cells }}=$ \# of RF cavities
$\sigma_{z}=$ BUarnch

CESR BPM errors

On a turn-by-turn basis, individual pick-up readout is expressed as:

Many turns distribution can be obtained via the Mellin convolution of the PDFs:

$$
h(y)=\int_{-1}^{1} f(x) g\left(\frac{y}{x}\right) \frac{d x}{x}
$$

where PDFs are:

$$
g_{Y}(y)=\frac{e^{-\frac{\left(y-y_{0}\right)^{2}}{2 \sigma_{s n r}}}}{\sigma_{s n r} \sqrt{2 \pi}} \quad f_{X}(x)=\frac{e^{-\frac{\left(a \cos (x)-\omega t_{0}\right)^{2}}{2\left(\omega \sigma_{j}\right)^{2}}}+e^{-\frac{\left(-a \cos (x)-\omega t_{0}\right)^{2}}{2\left(\omega \sigma_{j}\right)^{2}}}}{\omega \sigma_{j} \sqrt{2 \pi\left(1-x^{2}\right)}}
$$

BPM signal amplitude distribution parameterization

The probability density function for the pedestal jitter is Gaussian:

$$
f(x)=\frac{e^{-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma_{\mathrm{p}}^{2}}}}{\sqrt{2 \pi} \sigma_{\mathrm{p}}}
$$

where \boldsymbol{x}_{0} is the average signal amplitude and $\boldsymbol{\sigma}_{\mathrm{p}}$ is the pedestal jitter, which is typically ten counts out of a full range of 30 k counts.
The probability density function for a time jitter $\boldsymbol{\sigma}_{\mathrm{t}}$ (typically about 10 ps) and the timing error $\mathbf{t}_{\mathbf{0}}$ (typically a few ps) is

$$
g(x)=\frac{e^{-\frac{\left(\operatorname{acos}(x)-\omega \mathrm{t}_{0}\right)^{2}}{2\left(\omega \sigma_{\mathrm{t}}\right)^{2}}}+e^{-\frac{\left(-\mathrm{acos}(x)-\omega \mathrm{t}_{0}\right)^{2}}{2\left(\omega \sigma_{\mathrm{t}}\right)^{2}}}}{\sqrt{2 \pi\left(1-x^{2}\right)} \omega \sigma_{\mathrm{t}}}
$$

where $\boldsymbol{\omega}=2 \pi f_{\text {filter }}$ and $f_{\text {filter }}$ is the effective front-end filter frequency.
The probability density function for a product of density functions is given by the Mellin transform:

$$
F(z)=\int_{-1}^{1} g(x) f\left(\frac{z}{x}\right) \frac{d x}{x}
$$

Timing Scan: Bunch \#1 (B1kA) (10-turn avg) -- ctacf003 (192.168.32.53)-- 27E -- Sample @ X=4.81

