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Motivation

Large Mean Transverse Energy

* Typical photocathodes have a mean transverse energy of
hundreds of meV

* Want to reduce this to tens or even single digit meV

* At low temperatures, typical approximations used for
electron interactions in simulation become less valid

* When will reducing MTE no longer improve beam quality?

e Simulate the transport of cold electron beams




ow are Electron Interactions Simulated?

* An electron beam is a collection of point particles

* Exact interaction is computationally expensive

* Charge smoothed in a beam to approximate the
interaction (space charge)

* Want to calculate short range interactions
precisely and approximate long range interactions

From top to bottom:

Full Beam Brute Force Calculation
* One method to do this is the Barnes-Hut Algorithm Mean-field Approximation

Barnes-Hut Approximation



Faster Simulation of Non-Mean-field Space Charge

* To make simulating non-mean-field effects possible, rely on the multipole expansion
* E field of collection of charges approximated as series of static multipoles

* The Barnes Hut Tree Algorithm finds which grouEg of particles are far enough away,
such that the monopole term is the only term which contributes to a desired accuracy

* Approximates long range forces, exactly calculates interactions from nearby particles




Barnes-Hut Algorithm

* Barnes-Hut tree algorithm for simulation of 2 nearby galaxies

Grouped Nodes for force calculation

Full Barnes-Hut Tree of particle at origin (red)




Cathode Divergence

Cathode

* Model cathode interaction with image charge r r
method I —

* Image potential diverges as distance from @
cathode goes to O !

* Not physical, we know electrons can escape

* Need to model the cathode in a different way



Dynamic Image Charge Method

e Semiclassical approximation of
photoemission

* Image charge form on timescale set by the
cathode material

* Image potential is velocity dependent
and non-divergent

 Self-consistently solve for the image
potential for different starting energies



The Plus-Minus-Plus(PMP) Method

* Fields calculated in a 3 step process

* We will calculate the mean-field
electric fields including cathode

e Subtract out the mean field
calculation without the cathode

e Add in the point-to-point interaction
of the real particles

* Final Result

Image Charge

Cathode

Real Electrons
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DC Beamline Simulations

e Cathode effects needed to model beam correctly

* Point-to-point interactions increase emittance by a factor of 2
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Dynamic Image Charge Comparison

dc gun beamline MTE = 0 meV

=
o

* See how well the more exact
calculation compares to the PMP

method
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* Qualitatively, the graph behave
similarly
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* Compares to PMP method quite well
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RF Beamline Simulations

* At higher beam densities P2P effects matter more
* Point-to-point interactions increase emittance by a factor of 3.7
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Phase Space Portraits

* Core density drops by a factor of 4
* Not just an effect in the tails
* What caused this?
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Disorder Induced Heating (The Coulomb Hole)

* The probability of finding an electron in a small region near another
electron is near O due to Coulomb repulsion

* Charges with positions randomly chosen from a uniform distribution
have a higher potential energy than if the charges were ordered

* If the kinetic energy of the particles is small enough, the charges will
interact such that the charges become more evenly spaced and thus
will warm up
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Radial Distribution Function g(r)

* How the density of particles varies 3of

as a function of distance form a

reference particle |
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Calculating g(r)

* Find distance between 1 particle and every other particle

* Bin the results and normalize the number of particles in the shell by the
volume of the shell (for 3D 4mr2Ar)

* Repeat with all other particles and make an average

* This histogram plots p*g(r) vsr
3a

N/r 4

O 2 particle in shell
Q 5 particle in shell

O 7 particle in shell




The Coulomb Hole

* g(r) 3 mm away from the cathode
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 PMP simulation g(r) becomes visibly
non-flat for small r



Potential Energy From g(r)

* To find the heating from this, we will find the change in potential energy

 Let u(r) be the interaction potential between particles in the system

* The potential energy of a single particle due to this interaction is:
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Energy of the Coulomb Hole

1.2
* “Patch up” the Coulomb hole !
0.8
* Potential energy for these 2 < o4
different g(r) can be calculated |
0.4-
* Subtract to roughly calculate the 02|
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*This plot comes from a simulation at a lower particle density then
the plots shown before
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Energy of the Coulomb Hole

e Subtracting these energies gives .

us the energy of disorder induced
. 0.6 ]
heatlng, EDIH M — With Density Scaling
0.5!. ‘x\x\ Without Density Scaling |

* When the beam travels further
down the beamline, you can
extract out Ey, as long as the
shape of g(r) doesn’t change

-

* One common way to lose the %0 05 10 15 20 25 3.0
. s (m)
shape is to go through a focus

*This plot comes from a simulation at a lower particle density then
the plots shown before




Disorder Induced Heating

* Found heating for several densities

e Calculated DIH

 Disorder induced heating scales DIH Prediction

with density to the 1/3 power
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* For large densities, heating scales 0.10°
with density with power of .39+.03 0.05

e wran g
* At low densities, you can “outrun” Electron Density (1/mA3)

the heating effect



“What can | do with this?”

e Simulating these interactions is computational
intensive and should be avoided when possible

100
 Calculate order of magnitude of effect S 1/0/
~OE:0.01 Q .
= 0.01
* If near the order of magnitude of MTE, s 107
consider instantaneous heating approximation %" O

T10'% 107 10" 102" 102 105
. . Electron Density (1/m*3)
* Macroparticle extrapolation methodiony for the brave)
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Large MITE Comparison
* With a 150 meV MTE the simulations are identical as expected
* Noticeable changes occur only below ~30 meV for these densities 101/-1018
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Instantaneous Heating Approximation

* |gnore finite size effects

NCRF gun beamline MTE = 0 meV

P = { | m— PMP

: | == Barnes-Hut No Cathode
i | == Mean-Field

* The heating is isotropic

o
o0

* If the heating is “quick”, 2/3 of
Eyy can be added as an effective

o
o

90% Transverse Emittance (nm)
o
N
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* Approximations aren’t great, but 0.2 o—
the results are good L ncher —~
0.0 . Soleﬁoild . Sollen.oi(gl . .
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* “80% of the RMS emittance s (m)
growth can be explained in this
way



Simulating Systems with a lot more Particles

 What if you wanted to do the full P2P
simulation anyway, but you have far too many
particles to track them all

* People often use macroparticles to speed up
simulations

* Point-to-point effects are number density
dependent

* |f you use macroparticles, you will
overestimate DIH Simulation With Macroparticles

e But it still can be useful
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Point-to-Point Macroparticle Extrapolation

* The effect of macroparticles is

the inverse of increasing the
actual charge density

* Run a few simulations with
different macroparticle numbers

w

N

e Extract out the DIH density

-_—
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dependence and determine

Normalized Transverse Emittance From P2P

oo

impact on emittance for full
. I t .0 0.2 04 0.6 0.8 1.0 1.2 14
simulation N_macro/ N_real
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summary

* Interactions between large numbers of particles cannot be computed exactly

* First results on simulating cold photoelectron beamlines with a non-mean-
field electron interaction

 Beam quality decreases significantly, up to and including the core
* Heating effect consistent with disorder induced heating

* Ways to include point-to-point effects without full simulation



Questions?



Low Mean Transverse Energy(MTE)

MTE is the transverse momentum spread of a particle bunch

When the momentum spread is large enough, the electron beam
acts as a liquid, and the mObI|ItY10f the charges screen the effect
of local density fluctuations in the beam

_r
q e D
41 €QT

Screened electric potential: (1) =

A low MTE leads to a small Debye screening length:
EOka

pe?

We are at a point where A is less than the average inter particle
spacing(IPS) (Ap~.5 um, IPS~ 1um)

D =

Thus we have reached the breaking point of this approximation

Large Mean Transverse Energy

X




Barnes Hut Algorithm

Making a Barnes Hut Tree
1) Divide 3D Space into Octants
2) For Each Octant
Store center of mass charge
@ If(Octant contains < 2 particles) Stop
Else Bring Octant to Step 1

Calculating Forces

For Each Particle
1) Take ratio of distance from particle to
center of mass charge to
size of whole space
2) If larger than user specified value
& calculate force
Else Repeat for 8 octants



Going Through a Focus

* B, decreases when the bunch %
becomes smaller than its 30
original size 25

E |
;20;

* The warm beam canfillinthe & o

original Coulomb hole 2

-_—
o
o ¢ '

* g(r) can no longer be used this
way to calculate Ey 4

*This plot comes from a simulation at a lower particle density then

the plots shown before
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g(r) through a Focus

** e Before Beam Waist
*:* After Beam Waist
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DIH Scaling

Ne €2

* Plasma frequency: w, = —
0

* Heating: Ep;y[meV] = 1.04 * 106 (ny[m=3])1/3



Theoretical Scaling with Macroparticles

* DIH Kinetic energy per particle approx. potential
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