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Summary
• Simulation Studies and Machine Learning Applications for Orbit 

and Optics Correction at the Alternating Gradient Synchrotron

• Beam-based Quadrupole Transfer Function Measurement with 
Neural Network at Alternating Gradient Synchrotron Booster
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Relativistic Heavy Ion Collider (RHIC)
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• Only operating heavy-ion colliders in 
the US, only spin-polarized proton 
collider ever built

• Two 3.8 km counter-rotating rings 
(Yellow & Blue) with superconducting 
magnets

• Six interaction regions (IR) where two 
rings cross
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Simulation Studies and Machine 
Learning Applications for Orbit 
and Optics Correction at the 
Alternating Gradient Synchrotron



Brightness control at the Alternating 
Gradient Synchrotron (AGS)
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• Alternating gradient / strong focusing principle: achieve 
strong vertical and horizontal focusing of charged 
particle beam at the same time 

• Accelerates proton to 33 GeV in 1960

• 12 super-periods (A to L), 240 main magnets, 810 m 
circumference

• Now serves as injector for Relativistic Heavy Ion 
Collider (RHIC) 



Motivation: support for EIC Cooler
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• Electron cooling for the EIC requires small incoming emittances from the 
AGS

• Necessary pre-cooler at RHIC injection energy (AGS extraction energy)

• Current AGS lacks systematic tuning routine, mostly hand tuned by 
operators

• Algorithm to better control beam in AGS will be helpful for future EIC cooler



Orbit Response Matrix (ORM)
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• Mapping 𝑅 between closed orbit 
measurements and corrector settings

• 72 pick-up electrodes (PUE), 48 horizontal 
and vertical corrector pairs 

• Linear orbit response to corrector change: 
calculate 𝑅 matrix by changing each corrector 
pair separately

• Corrector current 𝐼 → angle 𝜃 by calibration 
factor

• Traditional orbit correction: ∆�⃗� = 𝑅!" ∆�⃗�



MAD-X to BMAD translation
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• Successfully translated bare machine to BMAD: ramping in progress 
• Can use Python interface (PyTao) to run simulations much easier

Floor plan



BMAD and PyTao: best tool for ML
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• Python interface: enable running simulations in Python scripts and 
Jupyter notebooks

• Get data with different control parameters in one go with for loops, 
without need to modify original lattice files

• Freedom to save data in any preferred form (i.e. combine into one 
huge data array and save in one file for easy fetch in the future)



• Actual machine with errors (e.g. quadrupole gradient errors, corrector calibration 
errors, etc.) produce different 𝑅#$%&'($) from model/reference machine 𝑅#*)$+

• Considering all possible sources of errors as a vector 𝜈, build response error model 
𝐽#*)$+

• Reconstruct any 𝜈 given known ∆𝑅 and 𝐽#*)$+

Use ORM to identify machine errors
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Reconstruct errors using SVD 
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• Traditional tuning routine: perform singular value decomposition (SVD) directly on 𝑅
• Machine error detection: perform SVD on 𝐽#*)$+
• Solve for ∆𝜈 using ∆𝑅 = 𝐽#*)$+ ∆𝜈, where 𝐽#*)$+ is not a square matrix

𝑛 = 𝑁,*((, 𝑚 = 𝑁-./

∆𝑅: 48 × 72, 1

𝐽#*)$+: (3456, 𝑁$((*()



Test case: quadrupole strength error
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• 24 quadrupoles (12 horizontal, 12 vertical), 1 in each super-period

• Linear orbit response to quadrupole kick change: calculate ∆𝑅 = 𝑅#$%&'($) − 𝑅 ($0 by 
changing each quadrupole separately  → 𝐽123 =

∆5!"
∆6#

• Quad kick defined with one variable KQH/KQV in MAD-X → variables in BMAD allow 
separate change of quad kicks



Test case 𝑱𝒎𝒐𝒅𝒆𝒍 matrix (horizontal)
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• Calculated using ∆𝜈 = 4 A in power 
supply current for each quadrupole 
(±1% in k1 value)

• Agreement with MAD-X model 
(redefined every quad individually) 
was obtained
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Reconstruct errors using SVD 
• 𝑈 and	𝑉 are	square	orthogonal	matrices:	𝑈𝑈7 = 𝑉𝑉7 = 𝐼

• 𝑆 is an 𝑛𝑚 × 𝑁 matrix whose first 𝑁 diagonal elements are singular values 𝜎 of 𝐽#*)$+

• 𝑆8 is pseudoinverse of 𝑆 whose first 𝑁 diagonal elements are "
9
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Test case: reconstruct errors with 𝑱𝒎𝒐𝒅𝒆𝒍

Satisfactory reconstruction results

• Reconstructed error = quadrupole power supply current

Case 4: All quadrupoles random error within 0.25%



Neural Network for real-time ORM
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• Need dedicated machine time to measure 
ORM 𝑅#$%&'($): at least 30 min

• Pre-measured 𝑅#$%&'($) gets less accurate 
with time → orbit drift / brightness drop

• Update ORM with real-time data: build neural 
network model for 𝑅#$%&'($) or 𝑅 #$%&'($)

!"

• Can be used to calculate ∆𝑅 for machine error 
reconstruction 



ORM NN model: training results
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• Input 48 vertical corrector kick → Output 72 y orbit measured at BPM
• FFNN with one hidden layer and Tanh activation
• Trained on 800 data pairs, tested on 200 data pairs: 𝑅: score = 0.998



Inverse ORM NN model: training results
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• Input 72 y orbit measured at BPM → Output 48 vertical corrector kick 
• FFNN with one hidden layer and Tanh activation
• Trained on 800 data pairs, tested on 200 data pairs: 𝑅: score = 0.993



Sensitivity studies for ORM 
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• Scan through some common sources of error to see how much ORM changes

• Find relevant parameters to include for building error-detecting model

• Goal: establish a neural network that identify error source given a measured ORM



Sensitivity studies: error sources
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Name Unit Range
Main magnet roll error mrad [-0.5, 0.5] 

Main magnet gradient error m-2 ± 0.1%
Quadrupole gradient error m-2 ± 0.2%

Sextupole offset error mm [-8, 8]
Snake magnet roll error mrad [-1.5, 1.5]

• Sources or error and ranges come from past survey data

• Criteria to quantify & visualize sensitivity:

• RMS of double-plane ORM matrix
• Beta-beating (vertical & horizontal)

∆𝛽
𝛽 =

𝛽!"#$%&"' − 𝛽!('")
𝛽!('")



Main magnet roll error
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• 240 main magnets, 20 magnets (01 to 20) in each super-period (A to L)

• Combined function magnets: dipole (Rbend) with non-zero k1, k2 

• Scan range: ±5 mrad with strong systematic super-periodicity (01 to 10 rolls one way, 11 to 20 rolls 
another way)

Magnet ∆𝑹𝒓𝒎𝒔 (%) ∆𝜷𝒙 (%) ∆𝜷𝒚 (%)

01 - 10 [-0.13, 0] [-2.5, 4.5] [-4.5, 4.7]
11 - 20 [-0.1, 0.52] [-5.7, 5.6] [-8.5, 9.3]



Main magnet gradient error
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• 240 main magnets, 20 magnets (01 to 20) in each super-period (A to L), six families: AD, AF, 
BD, BF, CD, CF;  BF*2 + CD*2 + AF*2 + CD*2 + BF*2 + BD*2 + CF*2 + AD*2 + CF*2 + BD*2

• Two different lengths: A and C 94 in, B 79 in

• Scan range: ±0.1% in k1 values

Family ∆𝑹𝒓𝒎𝒔 (%) ∆𝜷𝒙 (%) ∆𝜷𝒚 (%)

AD [-1.6, 1.8] ± 0.08 ± 0.1
AF [-0.01, 0.11] ± 0.12 ± 0.09
BD [-2.34, 2.87] ± 0.06 ± 0.1
BF [-0.14, 0.46] ± 0.1 ± 0.06
CD [-2.11, 2.72] ± 0.23 ± 0.29
CF [-0.73, 1.18] ± 0.34 ± 0.23



Quadrupole kick error
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• 24 quadrupole magnets (12 horizontal, 12 vertical), one (17 for QH, 03 for QV) in each super-
period

• Scan range: ±0.1% in k1 values

Magnet ∆𝑹𝒓𝒎𝒔 (%) ∆𝜷𝒙 (%) ∆𝜷𝒚 (%)

QH ± 0.0048 ± 0.0015 ± 0.007
QV ± 0.00037 ± 0.0049 ± 0.0044



Sextupole offset error
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• 28 sextupole magnets (14 horizontal, 14 vertical), 2 chromaticity sextupoles (13 for SXH, 
07 for SXV) per super-period 

• Scan range: ±8 mm in x, y offset

Source ∆𝑹𝒓𝒎𝒔 (%) ∆𝜷𝒙 (%) ∆𝜷𝒚 (%)

SXH x-off [-0.39, 0.6] [-1.04, 1.05] [-1.29, 1.55]
SXV x-off [-1.4, 2] [-0.9, 0.8] [-2.46, 3.04]
SXH y-off [0, 0.11] [-0.017, 0.005] [0, 0.07]
SXV y-off [0, 0.15] [-0.005, 0.025] [0. 0.14]



Siberian Snakes with generalized gradient
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• 2 partial Siberian snakes (helical dipoles) to overcome depolarizing spin 
resonances

• Acceleration of 1.5e11 protons/bunch to 24 GeV with 65% polarization 
was achieved using 5.9% and 10% helical partial snakes

• Reproduce snakes in Bmad using generalized gradient

Generalized gradient Grid fieldmap
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Beam-based Quadrupole Transfer 
Function Measurement with Neural 
Network at Alternating Gradient 
Synchrotron (AGS) Booster



Alternating Gradient Synchrotron (AGS) Booster
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• Pre-accelerate particles entering the AGS ring

• Accepts heavy ions from EBIS or protons from 
200 MeV Linac

• Serves as heavy ion source for NASA Space 
Radiation Laboratory (NSRL)

• 6 super-periods (A to F), 72 main magnets 



Quadrupoles in Booster
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• 24 horizontal (short) + vertical (long) pairs, 48 in total

• Wired in series in each plane (IQHC/IQVC), also in series with dipoles (IDIPO)

• Extra term to compensate for back EMF due to �̇�, stop band correctors (QVSTR/QHSTR) to 
avoid tune resonances

• Transfer function coefficients matched to 5th order, different for horizontal and vertical



Quadrupole transfer functions
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• Plan to take data on flat porch in Booster cycle: constant dipole current (IDIPO), constant B 
(�̇� = 0), no extra stop band correction (QVSTR/QHSTR = 0)

• Only variable is quadrupole power supply current (IQHC/IQVC)



AGS Booster: transfer function coefficients
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Ideal lattice

“Errors” (k1 
kicks) in 

quadrupoles

Bmad

Simulation Data Acquisition

Perturbed ORM 
measurements

ML model

“Errors” (k1 kicks) 
in quadrupoles

Supervised Learning
Real machine

“Errors” (PS 
currents) in 
quadrupoles

Operation

Transfer function 
coefficients

Real Data Acquisition

Polynomial Fit



Correctors & BPMs in Booster
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• 24 horizontal + vertical pairs, 48 in total

• Each corrector followed by a pick-up 
electrode (PUE), 48 PUEs in total

• ORM 𝑅 in each plane will have 
dimension (24,24)



Quadrupole current scan for model training

32

• Get model ORM 𝑅#*)$+ from lattice with all quadrupole currents set to zero

• Add k1 values to quadrupoles for PS currents within a range, get corresponding ORM 𝑅#$%&

• Good range: IDIPO = 1540 A, quad PS current 0 – 200 A, corrector current ±10 A, which 
leads to orbit distortion of 5 to 6 mm at maximum

• Training dataset:  𝑑𝑅 = (𝑅#$%&−𝑅#*)$+). Xlatten() as input with shape (N, 576), quads k1 
value as output with shape (N, 1) since they are wired in series

• Test ML model after training by doing a sequential PS current scan from 0 to 200 A, check 
whether the predicted k1 values fit the known polynomial pattern



Add noise to data
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• Gaussian BPM noise: unit width (𝜎 = 1), centered at zero (𝜇 = 0), amplitude 𝐴 = 80𝜇𝑚



NN model for dR to k1
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• One hidden layer NN with ELU activation 𝑅/ = 0.995
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NN model for dR to k1
• One hidden layer NN with ELU activation



Polynomial fit for transfer function
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Original data: iqvc -> k1v Fit data: iqv -> b1lv



Polynomial fit: numpy.polyfit

37



Polynomial fit: numpy.polyfit
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• Fit is very bad once extend the input range



Polynomial fit: scipy.optimize.curve_fit
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• Can set value ranges on all the fit coefficients, default is - inf to inf



Polynomial fit: scipy.optimize.curve_fit
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• Fit stays good once extend the input range
• Bounds for coefficients need to be carefully adjusted, otherwise doesn’t fit properly



CAD script to get real ORM
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• Script from Collider Accelerator Department 
(CAD) Controls Group

• FunctionEditor: send trapezoid-like time-
dependent function to corrector power 
supplies

• Script sets three corrector settings: positive, 
zero, negative



Real data: double plane ORM
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• In model: 48 BPMs, 48 correctors

• In reality:
• 47 correctors (no BD6-th)
• 37 good BPMs (bad ones produce 

NaN values)

• Real ORM 𝑅 has dimension (37,47)



Sample data in tune space
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• Sample non-zero H & V quadrupole 
settings that don’t hit a resonance

• Quadrupole PS current range 0 – 400 A

• Produce double-plane ORM in the 
same format as real data



Ongoing: NN model for double-plane data 
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• Get model double-plane ORM 𝑅#*)$+ from lattice with all quadrupole currents set to zero

• Find k1 value combos for horizontal and vertical quadrupoles that avoid resonances

• Add k1 combos to Bmad and get corresponding ORM 𝑅#$%&

• Training dataset:  𝑑𝑅 = (𝑅#$%&−𝑅#*)$+). Xlatten() as input with shape (N, 1739), quads k1 
value as output with shape (N, 2) for horizontal and vertical quads

• Problem to be solved: how to include uncertainty analysis in ML model training so the 
mapping is closest to reality
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